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Abstract

This thesis presents novel, general and automated methods for the detection, rectification, and
segmentation of imaged coplanar repeated patterns. The only assumption made of the scene
geometry is that repeated scene elements are mapped onto each other by planar rigid transfor-
mations. The class of patterns covered is broad and includes nearly all planar man-made repeated
patterns.

Novel minimal solvers are used to hypothesize lens undistortion and plane rectification param-
eters. A stratum of constraints is derived that defines the necessary configurations of coplanar
repeats for each successive level of rectification. The methods work on scenes without straight
lines and, in general, relax strong assumptions about scene content made by the state of the art.
A synthetic fronto-parallel view of an imaged scene plane (equivalently metric rectification) can
be estimated with as few a three coplanar repeats from an image taken with a rectilinear lens or
with as few as four coplanar repeats from a radially-distorted lens.

The thesis introduces the first minimal solvers that jointly estimate lens undistortion and affine
rectification from imaged coplanar repeated texture. Even with imagery from moderately dis-
torted lenses, plane rectification using the pinhole camera model is inaccurate or invalid. The
proposed solvers incorporate lens distortion into the camera model and extend accurate rectifi-
cation to wide-angle imagery, which is now common from consumer cameras. Accurate rec-
tifications on imagery taken with narrow focal lengths to fisheye lenses demonstrate the broad
applicability of the proposed solvers.

In addition, a multi-model estimator is proposed to solve the ill-posed problem of jointly
segmenting repetitive texture and regressing the rectification. The estimator encodes a discrimi-
native model in an energy functional that captures global interactions between distinct coplanar
repeated patterns and scene planes and combines several features that model how planes with
coplanar repeats are projected into images. Energy minimization is achieved by alternately
solving labeling and regression problems, which correspond to repetitive texture and plane seg-
mentation and scene geometry estimation, respectively.

Keywords: rectification, repeated patterns, minimal problems, radial distortion, minimal solvers,
symmetry, local features



Abstrakt

Disertační práce prezentuje nové a obecné metody pro automatickou detekci, narovnání a seg-
mentaci opakujících se rovinných vzorů. Jediný předpoklad o geometrii scény je ten, že opaku-
jící se prvky je možné na sebe transformovat pomocí eukleidovské rovinné transformace. Tuto
podmínku splňuje široká škála vzorů, do které spadají téměř všechny lidmi vytvořené opakující
se rovinné obrazce.

V práci jsou navržený nové algoritmy pro řešení některých minimálních problémů - výpočet
parametrů zkreslení objektivu a parametrů narovnání roviny. Jsou odvozeny nezbytné podmínky
pro konfigurace koplanárních opakujících se vzorů pro jednotlivé druhy narovnání. Navržené
metody nevyžadují silné předpoklady, jako například stávajícími metodami vyžadovaná přítom-
nost přímek ve scéně. Nalezené parametry umožňují vygenerovat syntetický čelní pohled sní-
mané scény, a to ze třech korespondujících koplanárních oblastí v případě prosté projektivní
kamery a ze čtyřech oblastí v případě radiálně zkreslených snímků.

Tato disertační práce prezentuje první algoritmy pro minimální problémy, které z obrazu
opakujícího rovinného vzoru počítají současně parametry radiálního zkreslení a parametry afinního
narovnání roviny. I v případě malého radiálního zkreslení narovnání roviny za použití prostého
projektivního modelu kamery vede k nepřesným či chybným výsledkům. Navržené algoritmy
proto začleňují radiální zkreslení do modelu kamery a poskytují přesné odzkreslení roviny i
pro širokoúhlé kamery, které jsou v současné době běžné používané. Přesné narovnání roviny z
kamer s úzkým zorným polem stejně tak jako širokoúhlých kamer s velkým radiálním zkreslením
demonstruje širokou použitelnost navržených metod.

V práci je dále navržena metoda pro souběžný odhad několika modelů, řešící špatně pod-
míněný problém současné segmentace opakujících se textur a odhadu parametrů narovnání.
Navržený estimátor obsahuje diskriminativní model v objektivní funkci, který zachycuje globální
vazby mezi různými koplanárními opakujícími se vzory, různými rovinami ve scéně, a jejich
projekcemi do obrazů. Funkce je minimalizována střídavým opakovaným řešením problémů
značkování a regrese, což odpovídá problémům segmentace rovin s opakující se texturou a
odhadování geometrie scény.

Klíčová slova narovnání roviny, opakující se vzory, minimální problémy, radiální zkreselní,
systémy polynomiálních rovnic, symetrie
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1 Introduction

Scene-plane rectification is a fundamental task of computer vision and is a prerequisite for many
classic computer-vision tasks. Rectification restores properties of the scene that make it possible
to detect parallel scene lines, measure ratios of areas, angles and ratios of lengths. The task of
restoring these properties is a gateway to many sophisticated computer-vision applications. In
particular, this thesis proposes methods for the robust estimation of rectification from imaged
coplanar repeated texture. The importance of detecting and modeling imaged repeated scene
elements grows with the increasing usage of scene-understanding systems in urban settings,
where man-made objects predominate and coplanar repeated structures are common. Methods
that jointly detect coplanar repeated texture and estimate imaged scene-plane rectification serve
as powerful tools for scene understanding.

There are several tasks where rectification is essential and coplanar repetitions are assumed.
E.g., single-view 3D reconstruction of buildings and facade parsing relies on comparing metric
properties of matched features on the building facade [96]. Inpainting and image beautification
are symmetry-aware image editing tasks that benefit from planar symmetry labeling, which is
performed in a rectified space [61].

State-of-the-art rectification methods that use coplanar repeated texture as input ignore lens
distortion. However, wide-angle imagery that has significant lens distortion is common since
consumer photography is now dominated by mobile-phone and GoPro-type cameras. High-
accuracy rectification from wide-angle imagery is not possible with only rectilinear camera
models [45, 94]. Lens distortion can be estimated by performing a camera calibration a pri-
ori, but a fully automated method for scene-plane rectification is desirable. Furthermore, in the
case of Internet imagery, the camera and its metadata are often unavailable for use with off-
line calibration techniques. A primary goal of the proposed methods in this thesis is to extend
accurate rectification to lens-distorted images containing coplanar repeated texture.

Augmented reality applications require calibrated cameras to place virtual objects in the im-
aged scene, and calibration data may not be readily available for Internet imagery or from mo-
bile phones. Rectification is a necessary task of single-view auto-calibration methods. The
state-of-the-art single-view auto-calibration methods for lens-distorted images rely on the pres-
ence of parallel scene lines to estimate vanishing points [93, 94, 3]. Expanding rectification to
lens-distorted images with sparse scene lines but available coplanar repeated scene texture also
expands the class of images that can be auto-calibrated.

In particular, the affine rectification of a scene plane transforms the camera’s principal plane so
that it is parallel to the scene plane. This restores the affine invariants of the imaged scene plane,
which include parallelism of lines and translational symmetries [32, 74]. There is only an affine
transformation between the affine-rectified imaged scene plane and its real-world counterpart.
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1 Introduction

Chapters 5 and 6 propose minimal solvers that jointly estimate lens undistortion and affine
rectification from local features extracted from repeating coplanar texture. The proposed solvers
are the first solvers that can directly affinely rectify from the radially-distorted image of points
or regions extracted from coplanar repeated texture. The input to the solvers are intra-image
correspondences of local features. Geometrically, the local features are represented by local
affine frames, that is, by triplets of (semi-) locally measured image points (see Section 3.2).

The solvers can be differentiated by the assumptions made with respect to the configurations
of the inputted local features. Chapter 5 introduces solvers that jointly undistort and affinely
rectify from the imaged translations and reflections. This feature configuration is shown in
Figure 1.1a. Chapter 6 generalizes joint undistortion and affine rectification to work with the
images of rigidly-transformed local features. This feature configuration is shown in Figure 1.1b.
All of the proposed solvers eliminate the intermediary undistortion step that is required by the
state-of-the-art solvers using repeated texture as input. The best solver can be chosen based on
the expected scene content or speed requirements of the application. In general, the solvers are
fast and robust to image noise, so they work well in robust estimation frameworks like RANSAC

[24].

Metric rectification restores the metric invariants of the imaged scene plane, which include
length ratios and angles [32, 74]. In general, the removal of the effects of perspective imaging
is helpful for understanding the geometry of the scene plane, and the recovery of metric invari-
ants greatly helps with tasks such as detecting symmetries and repeated image content. Metric
rectification is used throughout the thesis to synthesize fronto-parallel views of scene planes.
Section 2.10.3 introduces linear minimal solvers to estimate either a semi-metric upgrade from
the affine-rectified images of glide-reflected coplanar repeated texture (see Figure 1.1a) or a
metric upgrade from the affine-rectified images of rigidly-transformed coplanar repeated texture
(see Figure 1.1b).

Imaged scene plane rectification is a poorly constrained problem and verifying the restoration
of affine or metric invariants is typically insufficient to correctly assign measurements extracted
from imaged scene planes to the model that generated it in the multi-plane setting. Furthermore,
good feature coverage over large spans of the imaged scene plane is necessary to properly con-
strain rectification estimation. Chapter 7 proposes an energy functional that combines several
features that model how planes with coplanar repeats are projected into images and captures
global interactions between different coplanar repeated texture and scene planes. In particular,
regularization terms are incorporated that encourage the assignment of measurements to models
such that they conform to the expectations of how a physical scene containing planes must look.
These scene prior terms benefit rectification estimation by assuring smooth and dense coverage
of measurements over contiguous spans of the imaged scene plane. Minimal solvers for rec-
tification, e.g., proposed in Chapters 5 and 6, are easily plugged into the energy minimization
framework to provide scene plane proposals. The model proposals are jointly and globally eval-
uated, which prevents a model’s validity from being biased by the order of its evaluation, which
is a common problem with greedy methods like sequential RANSAC. These properties of the
energy function and minimization proposed in Chapter 7 enable rectification solvers to be used
in difficult scenes with multiple planes lacking a dominant plane.
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(a) Translations and Reflections

distorted

undistorted

affine

semi-metric

[proposed]

[state of the art]

[state of the art]

(b) Rigid Transformations

distorted

undistorted

affine

metric

[proposed]

[state of the art]

[state of the art]

Figure 1.1: Rectifications of Coplanar Repeated Texture. The top row is a scene plane with
(a) translated and reflected regions, which is the assumed configuration for the
solvers of Chapter 5, and (b) rigidly-transformed regions, which is the assumed con-
figuration for the solvers of Chapter 6. The state-of-the art requires an intermediate
undistortion estimation, while the proposed solvers can directly affine-rectify from
the distorted image of coplanar repeated texture. Affine-rectifications are metrically
upgraded with the linear solvers introduced in Section 2.10.3.
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1.1 Contributions

This thesis introduces the first minimal solvers of polynomial systems of equations for single-
view geometry. In particular, the thesis introduces several novel methods for rectifying imaged
scene planes from coplanar repeated texture.

The thesis derives novel constraints on lens undistortion and scene-plane rectification pa-
rameters using different configurations of radially-distorted conjugately-translated and reflected
texture. The complexities of the generated solvers are compared with respect to the choice to
eliminate particular unknowns from the polynomial system of equations in their derivations.
One of the proposed solver variants can jointly undistort and rectify in only 0.5 microseconds.

In addition, the thesis generalizes the problem of lens undistortion and imaged scene-plane
rectification to admit imaged rigidly-transformed coplanar repeats. In particular, derivations
of constraints on rectification parameters that either directly use the undistorting and rectify-
ing transform or its linearization are given. The solvers are generated with either elementary
methods or the Gröbner basis method. A method adapted from [54] is used to sample feasible
monomial bases to maximize the numerical stability of the solvers generated with the Gröbner
basis method. The constraints derived from the linearized rectifying transform are used to cal-
culate the dense relative change-of-scale due to the imaging of a scene plane, which gives the
relative change of scale at any point of the imaged scene plane.

The code repository associated with this thesis at https://github.com/prittjam/repeats
provides solvers that cover all minimal configurations of these problems.

The thesis proposes several adaptations to the RANSAC robust estimation framework for the
problem of rectifying imaged coplanar repeats [24]. In particular, a criterion for pre-empting
consensus set construction is introduced for candidate solutions that are generated from mea-
surements that provide redundant constraints. The pre-emptive strategy, called best minimal
solution selection, eliminates the need to construct the consensus sets for all but one candidate
solution. Best minimal solution selection significantly increases rectification accuracy compared
to a strategy of random selection. In addition, a sequential two-stage RANSAC verification strat-
egy is proposed that: (i) verifies that affine-rectified coplanar repeats are consistent with affine
invariants, and (ii) metrically-upgraded coplanar repeats respect metric invariants. The combi-
nation of tests for scale consistency and congruence greatly increases the precision of covariant
regions that are labeled as coplanar repeats and rectification accuracy.

The methods proposed in this thesis extend accurate rectification to a new class of imagery.
Accurate rectificatoins of imaged scene planes from challenging wide-angle and fisheye images
are achieved using the new solvers.

The thesis proposes and novel energy function for modeling scenes containing imaged copla-
nar repeated texture. The energy function is designed such that efficient inference can be
achieved with state-of-the-art methods in discrete optimization. The global context of the en-
ergy function enables accurate scene plane segmentation and rectification of scene containing
multiple planes and lacking a dominant plane. Rectifying solvers can easily be integrated into
the minimization framework to provide scene plane models. A challenging dataset is introduced
that is used for quantitative evaluation against the state of the art.
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1.2 Publications

1.2 Publications

The content of this thesis is based on the material from the following articles published during
the time of the PhD candidacy,

• [74] J. Pritts, O. Chum, and J. Matas. Detection, rectification and segmentation of coplanar
repeated patterns. In CVPR, 2014.

The article Detection, Rectification and Segmentation of
Coplanar Repeated Patterns won the Computer Vision
Winter Workshop 2014 Best Presentation Award.

• [77] J. Pritts, D. Rozumnyi, M. P. Kumar, and O. Chum. Coplanar repeats by energy
minimization. In BMVC, 2016.

• [75] J. Pritts, Z. Kukelova, V. Larsson, and O. Chum. Radially-distorted conjugate trans-
lations. In CVPR, 2018.

• [76] J. Pritts, Z. Kukelova, V. Larsson, and O. Chum. Rectification
from radially-distorted scales. In ACCV, 2018.

The article Rectification from Radially-Distorted Scales won the
Saburo Tsuji Best Paper Award at the 14th Asian Conference on
Computer Vision (ACCV) 2018.

• [80] J. Pritts, Z. Kukelova, V. Larsson, Y. Lochman, and O. Chum. Minimal solvers for
rectifying from radially-distorted scales and change of scales, 2019. arXiv: 1907.11539
[cs.CV].

The journal article Minimal Solvers for Rectifying from Radially-Distorted Scales and
Change of Scales is accepted to The International Journal of Computer Vision (IJCV).

• [79] J. Pritts, Z. Kukelova, V. Larsson, Y. Lochman, and O. Chum. Minimal solvers for
rectifying from radially-distorted conjugate translations. In 2019. arXiv: 1911 .01507
[cs.CV].

The journal article Minimal Solvers for Rectifying from Radially-Distorted Conjugate
Translations was submitted for review to IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence (TPAMI).
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1 Introduction

The following publication was from the time of the PhD candidacy but is not included in the
thesis. The publication was omitted because the content is irrelevant to the thesis topic.

• [78] J. Pritts, O. Chum, and J. Matas. Approximate models for fast and accurate epipolar
geometry estimation. In IVCNZ, 2013.

The article Approximate Models for Fast and Accurate
Epipolar Geometry Estimation won the Image and Vi-
sion Computing New Zealand 2013 (IVCVNZ) Best Pa-
per Award.

1.3 Structure of the Thesis

Radially-Distorted Cameras Viewing a Scene Plane Chapter 2 gives denotations, ter-
minology and concepts from single-view geometry that unify the novel solvers proposed in
Chapter 5 and 6. In particular, Chapter 2 relates the problem of imaged scene-plane rectification
to the pre-imaging operation of a projective camera with radial lens distortion that can be param-
eterized with the division model [26]. Fundamental properties of the real-projective plane are
discussed, which are prerequisites for following the derivations of the proposed minimal solvers.
State-of-the-art techniques for computing affine and metric rectification are discussed. Linear
solvers for computing the metric upgrade are derived. While this was a contribution of the au-
thor prior to the PhD, the proposed method for computing metric upgrades has been extended
and used in several novel contexts.

In addition, Chapter 2 introduces the warp error, which is a novel measure of rectification
accuracy that is used in several performance benchmarks in Chapter 5, 6, and 7 to compare the
proposed methods against the state-of-the-art methods discussed in Chapter 2.

The Correspondence Problem for Imaged Coplanar Repeats Chapter 3 formalizes
the concept of a coplanar repeat. Coplanar repeats are related to planar symmetry groups such
as frieze and wallpaper groups and rotational symmetries. A local feature detection, description,
and matching pipeline is proposed for the tentative identification of coplanar repeats. Ultimately,
the tentative correspondences of image patches are used to induce constraints on parameters for
radial lens undistortion and scene plane rectification. Since the proposed feature pipeline must be
robust to viewpoint change, lighting change, sensor noise and occlusions, the formal definition
of a coplanar repeat is relaxed so that the problem formulation can be posed in the context of the
local-feature representations that are extracted by the proposed pipeline.

Solving Systems of Polynomial Equations Chapter 4 provides the prerequisites in alge-
braic geometry that are required to derive and generate the solvers introduced in Chapters 5 and
6. In particular, the Gröbner bases method ant the hidden-variable trick are discussed in detail.
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1.4 How to Read the Thesis

Rectifying from Radially-Distorted Conjugate Translations Chapter 5 explores novel
problem formulations for the affine rectification of imaged translated coplanar repeats (i.e.,
radially-distorted conjugate translations) and imaged reflections. Furthermore, Chapter 5 es-
tablishes the connection between joint undistortion and affine rectification and radially-distorted
conjugate translations, and several statements that are necessary to derive the solvers are proved.
The chapter shows how covariant regions extracted from radially-distorted conjugately-translated
and reflected texture can be used to satisfy the derived constraints.

Rectifying from Radially-Distorted Scales and Change of Scales Chapter 6 ex-
plores novel problem formulations for the affine rectification of imaged rigidly-transformed
coplanar repeats. Furthermore Chapter 5 derives how the scale constraint—that two instances of
rigidly-transformed coplanar repeats occupy identical areas in the scene plane and in the affine
rectified image of the scene plane—can be used to affinely rectify imaged rigidly-transformed
coplanar repeats.

Each of Chapters 5 and Chapter 6 provides: (i) a detailed analysis of the degeneracies of
the solvers, (ii) experiments that evaluate the stability, noise sensitivity, and wall-clock time
to solution of the proposed solvers with respect to a bench of the state-of-the-art solvers, and
(iii) rectifications using the new solvers on challenging images.

Coplanar Repeats by Energy Minimization Chapter 7 introduces a global energy func-
tion for modeling scenes containing coplanar repeated texture. An energy minimization frame-
work is described, which is a block-coordinate descent that alternates between labeling and
regression problems. Results using a rectifying solver on scenes containing multiple planes are
presented. A new annotated dataset is introduced that enables quantitative evaluation against the
state of the art.

1.4 How to Read the Thesis

The prerequisites in single-view geometry and algebraic geometry that are needed for under-
standing the derivations of the the minimal solvers proposed in this thesis are contained in
Chapters 2 and 4. The concept of a coplanar repeat and the types of local features that are
used for their representation are detailed in Chapter 3. Chapters 5 and 6 introduce novel meth-
ods of jointly undistorting an rectifying imaged scene planes from coplanar repeated patterns.
Chapter 7 proposes the energy function that formulates a global scene model for how copla-
nar repeated textures are imaged. The minimization of the energy using model proposals from
recityfing solvers is detailed. Any of the state-of-the-art or proposed solvers can be used to
hypothesize the model proposals.

Knowledge of the real-projective plane on the level of [32] will help with the understanding
of the content of the thesis. This thesis takes an algebraic approach to planar geometry, meaning
that geometric primitives are parameterized in terms of coordinates and algebraic entities. E.g.,
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for concision of language, a point is synonymous with a vector with respect to some basis; a line
is also a vector, and a conic is a symmetric matrix.

1.4.1 State of the Art

The state of the art is not explicitly broken out as a chapter. Rather it is mostly grouped with the
relevant topics in Chapters 2, 3, and 4.

1.5 Authorship

I, James Pritts, hereby certify that the results presented in this thesis are my novel research,
which was done with the cooperation of my thesis advisors Ondřej Chum [77, 74, 75, 76, 80,
79] and Zuzana Kukelova [75, 76, 80, 79]. I am also grateful for the scientific collaboration of
coauthors Viktor Larsson [75, 76, 80, 79], Pawan Kumar [77], Denys Rozumnyi [77], Yaroslava
Lochman [80, 79] and Jiři Matas [74].
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2 Radially-Distorted Cameras
Viewing a Scene Plane

This chapter introduces the single-view geometry that will be needed to model cameras viewing
coplanar repeated patterns. The affine and metric rectifying homographies will be introduced
as well as rectification under lens distortion. State of the art methods for computing rectifying
homographies will be reviewed.

2.1 Notation

In this section we provide a brief review of the notations that are used to formulate rectifying
solvers in this thesis. The concepts denoted here will be introduced throughout this chapter, but
a comprehensive introduction to the notation is given here as a reference to the reader.

For most of the text, points are modeled with homogeneous coordinates and are denoted
xi =

(
xi, yi, 1

)>, where xi, yi are the image coordinates. For particular derivations such as
for the linear solvers for a metric upgrade in Section 2.10.3 or for the joint undistorting and
affine rectifying change-of-scale solvers in Section 6.4, it is convenient to use inhomogeneous
points, which are denoted in serif font as xi =

(
xi, yi

)>. The affine-rectified images of homo-

geneous points and inhomogeneous points are denoted as xi =
(
xi, yi, 1

)>, and xi =
(
xi, yi

)>,
respectively.

The image of a scene plane’s vanishing line is denoted l =
(
l1, l2, l3

)> and the line at infinity

is l∞ =
(
0, 0, 1

)>. The phrase vanishing point of the translation direction is motivated by
the fact that all imaged scene point correspondences translating in the same direction meet at
a vanishing point. A vanishing point is denoted by either u or v that are the vanishing points
of the translation directions U or V on the scene plane as imaged by P, respectively. Matrices
are in typewriter font; e.g., an affinity is A, a homography is H, and a conjugate translation
(also a homography) with vanishing point u is denoted Hu (see Section 2.9.2). In general,
a point correspondence x ↔ x′ is two points x and x′ that are related by some geometric
transformation. The notation is summarized in Table 2.1.

2.2 Solver Naming Convention

The naming convention for the rectifying solvers proposed in this thesis is based on the num-
ber of required correspondend regions and the unknowns returned by the solver. The minimal
configuration of region correspondences is given as the subscript to H (denoting a homography);
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2 Radially-Distorted Cameras Viewing a Scene Plane

Term Description

P 3× 3 camera matrix viewing z = 0 (see (2.8)).
X homogeneous scene point or metric-rectified point in RP2

x, x̃ homogeneous rectilinear and distorted image point
x homogeneous affine-rectified point (see (2.36))
X inhomogeneous scene point or metric-rectified point

x, x̃ inhomogeneous rectilinear and distorted image point
x inhomogeneous affine-rectified point

x ↔ x′ x,x′ are in correspondence with some transformation
U,V translations in the scene plane
u,v vanishing points of the trans. U,V as imaged by P

mi join of undistorted point correspondence xi ↔ x′i
mij ,m

′
ij joins of xi ↔ xj and x′i ↔ x′j , respectively

[·]× skew-symmetric operator for computing cross products
T homogeneous rigid-transformation matrix

l, l̃ image of vanishing line and distorted vanishing line
l∞ the line at infinity
H affine-rectifying homography

Hu conjugate translation in the imaged trans. direction u
A an affinity, change of basis or the metric upgrade in metric rectification
λ division model parameter for undistortion (see Section 2.11)

Π, π the scene plane and image plane (in RP2)
R̃,R,R distorted, undistorted, and affine-rectified regions

Table 2.1: Common Denotations.

e.g., a solver requiring 3 region correspondences is denoted H222. The unknowns that are recov-
ered by the solver are suffixed to H·. An additional superscript may be added to denote that the
constraints used to derived the solver belongs to a family of solvers using similar constraints.

E.g., the solver of Chum et al. , which requires two region correspondences and returns the
vanishing line, is denoted HCS

22 l, where CS is used to denoted that it is a change-of-scale solver
(see Section 2.9.1). The proposed solver in Section 5.4.2 requiring one region correspondence
and returning the vanishing line l and division model parameter λ of lens distortion is denoted
H2lλ.

2.3 Camera Model

A camera’s purpose is to capture rays of light reflected from scene objects to form an image of
the scene. Images are formed by projecting points in the scene to points in the image plane. A

10



2.3 Camera Model

general camera forming an image is given by(
x, y
)>

= h(
(
X, Y, Z

)>
, z), (2.1)

where h is a vector-valued function defining image capture, vector z parameterizes the camera,(
X, Y, Z

)> are the coordinates of a scene point in the world coordinate system, and
(
x, y
)>

are the coordinates of its projection on the sensor plane in the image coordinate system by the
camera h(·).

The pinhole camera, also called the camera obscura, is perhaps the simplest camera model.
Image formation by a pinhole camera is a composition of central projection through the pinhole
onto the image plane followed by a homography that changes the basis to the image coordinate
system implicit to the camera’s sensor. The following sections develop the algebraic relations
that are sufficient to model this geometry.

Perspective Projection

The perspective projection of a 3D point
(
X, Y, Z

)> to a 2D point on the image plane
(
x, y
)>

that is distance f from the center of projection is given by the perspective projection equation

(
x, y
)>

=
f

Z

(
X, Y

)>
,

where
(
X, Y, Z

)> is the Euclidean representation of a scene point.
Perspective projection as defined in (2.3) is non-linear, but the imaging transformations can

be modeled with a linear transformation by representing scene points as homogeneous 4-vectors
and image points as homogeneous 3-vectors. Using the homogeneous representation, perspec-
tive projection simply becomes

α

xy
1

 = diag(f, f, 1)
[
I3 | 0

]
X
Y
Z
1

 , (2.2)

where α = 1/Z.
For the following sections scene and image points will be modeled with homogeneous coor-

dinates. This enables, e.g., rigid transforms and perspective projections to be modeled as linear
transformations, which simplifies the algebraic representation of the camera.

Camera Coordinate System

A scene point
(
X, Y, Z, 1

)> is put into the camera’s coordinate system by a change of basis
given by a transformation defining a rigid transform in Euclidean space[

R t
0> 1

]
, (2.3)
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2 Radially-Distorted Cameras Viewing a Scene Plane

where R ∈ SO(3) is a rotation matrix (equivalently an orthonormal matrix), t ∈ R3 is a trans-
lation, and c = −R>t gives the Euclidean coordinates of the camera’s projection center in the
scene coordinate system.

Image Coordinate System

Projected points are put into the image coordinate system by applying a homography that en-
codes the geometry of the camera’s sensor. For real cameras, the homography is upper triangularax ax cot θ px

0 ay/ sin θ py
0 0 1

 , (2.4)

where ax and ay are the scale factors of the image plane in units of pixels/mm,
(
px, py

)> is the
principal point or optical center of the camera in pixels, and θ is the skew of the sensor.

The convention is to denote the intrinsics matrix as K and incorporate the scaling due to the
focal length (see (2.2)),

K =

ax ax cot θ px
0 ay/ sin θ py
0 0 1

f 0 0
0 f 0
0 0 1

 =

kx kc px
0 ky py
0 0 1

 . (2.5)

For a typical CCD camera with orthogonal raster and unit aspect ratio, the simplifications
kx = ky and θ = π/2 can be assumed. For a pinhole camera, in addition to these typical
constraints, we have ax = ay = 1.

Camera Matrix

Thus positioning and orienting the camera, projection, and the imaging transformation can be
composed into a linear operation given by 3× 4 camera matrix

P3×4 =
[
p1 p2 p3 p4

]
= K

[
I3 | 0

] [ R t
0> 1

]
= K

[
R | t

]
(2.6)

Columns pj have geometric meaning. Columns pj where j ∈ { 1 . . . 3 } are the vanishing points
of the axes of the scene coordinate system and p4 is the image of the scene origin. The column
representation of P3×4 will play an important role in modeling cameras viewing scene planes, as
will be seen in Section 2.4.

Then the imaging of a scene point by the camera P3×4 is given as

α
(
x, y, 1

)>
= P3×4

(
X, Y, Z, 1

)>
. (2.7)

The methods presented in this thesis work for affine cameras as well. There is nothing in the
derivations that follow that preclude the use of affine cameras. However, affine cameras cannot
move the line at infinity, and we are interested in modeling physical cameras with shorter focal
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2.4 Camera Viewing a Scene Plane

lengths viewing scene planes at oblique angles, which is not a use case of affine cameras [20].
Thus, let us assume that the camera is modeled as one of the finite projective cameras defined
above.

2.4 Camera Viewing a Scene Plane

Without loss of generality, a coplanar scene point
(
X, Y, Z, 1

)> is assumed to be on the scene
plane z = 0. This permits the camera matrix P to be modeled as the homography that changes
the basis from the scene-plane coordinate system to the camera’s image-plane coordinate system
in the real-projective plane RP2,

α

xy
1


︸ ︷︷ ︸

x

[
p1 p2 p3 p4

]︸ ︷︷ ︸
P3×4


X
Y
0
1

 =
[
p1 p2 p4

]︸ ︷︷ ︸
P

XY
1


︸ ︷︷ ︸

X

. (2.8)

The scene and image planes are denoted Π and π, respectively.

2.5 Affine-Rectifying Homography

Affine rectification restores affine invariants such as parallelism of lines and ratios of areas.
An affine-rectifying homography H transforms the image of the scene plane’s vanishing line
l =

(
l1, l2, l3

)> to the line at infinity l∞ =
(
0, 0, 1

)> [32]. Thus any homography H satisfying
the constraint

ηl = H>l∞ =
[
h1 h2 h3

]0
0
1

 , η 6= 0, (2.9)

and where l is an imaged scene plane’s vanishing line, is an affine-rectifying homography. Con-
straint (2.9) implies that h3 = l, and that the image of the line at infinity is independent of rows
h>1 and h>2 of H. Thus, assuming l3 6= 0 [32], the affine-rectification of image point x to the
affine-rectified point x can be defined as

αx =
(
αx, αy, α

)>
= H(l)x

s.t. H(l) =

1 0 0
0 1 0

l>

 and α 6= 0.
(2.10)

2.6 Metric-Rectifying Homography

Metric rectification restores metric invariants such as angles and ratios of lengths. Analogous
to Section 2.5, where affine rectification is achieved by transforming the vanishing line to its
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2 Radially-Distorted Cameras Viewing a Scene Plane

canonical position at the line at infinity, metric rectification is achieved by transforming the
imaged circular points to their canonical positions at

(
1,±i, 0

)>. The vanishing line can be
encoded as the join of the imaged circular points [16, 56]. Let the images of the circular points
be iπ =

(
a+ ib, c+ id, 1

)> and jπ =
(
a− ib, c− id, 1

)>. Then the join of the images of the

circular points is scaled so that l = 1
2π (iπ × jπ) =

(
d,−b, bc− ad

)>. Thus an affine-rectifying
homography can be constructed from the coordinates of the imaged circular points as

H(
(
d,−b, bc− ad

)>
) =

1 0 0
0 1 0
d−b bc− ad

 (2.11)

where the affine-rectified imaged circular points have the form

H(
(
d,−b, bc− ad

)>
)iπ = ξi′π = ξ

(
a+ ib, c+ id, 0

)>
= (p+iq)

(
a+ ib, c+ id, 0

)>
, (2.12)

where ξ = (p+ iq).

Furthermore, there exists an affine transformation, call it A−1, that moves the circular points
from their canonical positions, namely I =

(
1, i, 0

)> and J =
(
1,−i, 0

)> to their transformed
position in the affine-rectified space [16]. Let the parameterization of A−1 be

A−1 =

pa− qb qa+ pb tx
pc− qd qd+ pd ty

0 0 1

 . (2.13)

Note that det A−1 = (p2 + q2)(ad − bc), which is non-zero if either p 6= 0 or q 6= 0. Also
note that the translation parameters tx, ty may be set arbitrarily since they have no effect on
the ideal points or the invertibility of A−1. Unknowns q, tx, ty can be eliminated by setting
q = tx = ty = 0. Setting p = (ad − bc)−1 and inverting A−1 gives a parameterization of the
metric-rectifying homography strictly in terms of the coordinates of the imaged circular points

HM (a, b, c, d) = AH =

 d −b 0
−c a 0
0 0 1

1 0 0
0 1 0
d −b bc− ad


=

 d −b 0
−c a 0
d −b bc− ad

 .
(2.14)

Note that by QR decomposition, A can be replaced with R K, where R is a rotation matrix and
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2.7 Homography Decomposition

K is upper triangular so that

HM =


d√

c2+d2
c√

c2+d2
0

−c√
c2+d2

d√
c2+d2

0

0 0 1


︸ ︷︷ ︸

R


√
c2 + d2 − ac+bd√

c2+d2
0

0 ad−bc√
c2+d2

0

0 0 1


︸ ︷︷ ︸

K

1 0 0
0 1 0
d −b bc− ad


︸ ︷︷ ︸

H

. (2.15)

Since metric rectification is invariant to rotation, R can be eliminated leaving R>HM = KH, where
R>HM is metric rectifying. Up to a uniform scale factor, this coincides with the expression for
S−1P−1 derived with the decomposition of (2.18) in the introduction,

R>HM =


√
c2 + d2 − ac+bd√

c2+d2
0

0 ad−bc√
c2+d2

0

0 0 1


︸ ︷︷ ︸

K

1 0 0
0 1 0
d −b bc− ad


︸ ︷︷ ︸

H

. (2.16)

Since {αR>HM }α 6=0 is the set of all metric-rectifying homographies, the metric upgrade A is
upper-triangular only if the metric-rectifying homography is of the form αKH, where K H are
strictly functions of the coordinate of the image of the circular points.

Suppose that α 6= 0. By letting a′ =
√
αa, b′ =

√
αb, c′ =

√
αc and d′ =

√
αd, homography

αHM can be written as a function of the uniformly scaled coordinates of the imaged circular
points as

αHM = HαM = HαM (a′, b′, c′, d′) =

 d′ −b′ 0
−c′ a′ 0
0 0

√
α



√
α 0 0

0
√
α 0

d′ −b′ −a′d′−b′c′√
α

.

 (2.17)

From (2.17), tt can be seen that HαM takes the form of HM only if α ∈ {−1, 1 }. In other words,
HM is inhomogeneous with respect to the parameters a, b, c, d.

2.7 Homography Decomposition

The camera matrix P can be uniquely decomposed into a similarity S, affinity A, and projectivity
H

P =

[
sR t
0> 1

]
︸ ︷︷ ︸

S

[
A2×2 0
0> 1

]
︸ ︷︷ ︸

A

[
I2×2 0
l1 l2 l3

]
︸ ︷︷ ︸

H

, (2.18)

where l3 6= 0, s is non-zero scalar, R ∈ SO(2) is a rotation, t ∈ R2 is a translation, A2×2 is
an upper-triangular matrix specifying the anisotropic scaling and skew components such that
det A2×2 = 1, and the projective components are specified by

(
l1, l2, l3

)>, where l3 6= 0 (see
Hartley and Zisserman [32]).

Note that since a homography is invertible, (2.18) implies that P can be decomposed as the

15



2 Radially-Distorted Cameras Viewing a Scene Plane

(a) Scene Plane (b) Perspective Image (c) Affine-Rectified Image

Figure 2.1: The Equal-Scale Affine Invariant. (a) Two instances of rigidly-transformed copla-
nar regions occupy identical areas in the scene plane. Rigidly-transformed copla-
nar regions are the same color. (b) Scene plane viewed by a perspective camera.
(c) Affine-rectified image of the scene plane restores the invariant that rigidly-trans-
formed coplanar regions occupy identical areas.

inverses of a similarity S′, affinity A′ and projectivity H′ as P = H′−1A′−1S′−1.

2.8 Pre-imaging and Rectification

As shown in Section 2.7, the pre-imaging homography P−1 can be decomposed into a similarity
S, affinity A, and projectivity H as P−1 = SAH. Metric rectification is invariant to similarity
transformations [32]. Thus, AH = S−1P−1 is also metric rectifying. Since the pre-imaging
transform P−1 is homogeneous, it has eight degrees of freedom, four of which are eliminated
by multiplying it with the similarity S−1. This leaves four degrees of freedom for the metric
rectifying homography AH , where the matrix H is the affine-rectifying homography, and the
matrix A is the metric upgrade.

2.9 Computing Affine Rectification

The form of the affine-rectifying homography parameterized by the coordinates of the imaged
vanishing line is derived in (2.10). The image of the vanishing line is typically estimated from
affine invariants encoded by algebraic constraints that are a function of the unknown image of
the vanishing line l =

(
l1, l2, l3

)> [14, 20, 56, 82]. The following sections will review some
state-of-the-art solvers for computing the vanishing line.

2.9.1 Change-of-Scale Solvers

The solvers introduced in this section exploit the scale constraint of affine-rectified space: two
instances of rigidly-transformed coplanar regions occupy identical areas in the scene plane and
in the affine-rectified image of the scene plane. The scale constraint is also called the equal-
scale invariant of affine-rectified space. The invariant is shown in Figure 2.1. The equal-scale
invariant of affine-rectified space is also used by the proposed solvers in Chapter 6 to extend
affine rectification from minimal solver to lens-distorted images.

16



2.9 Computing Affine Rectification

(a) Star Wars Crawl (b) Affine-Rectified (c) Estimated Vanishing Line

Figure 2.2: Affine Rectification from Change of Scale. (a) Projective warp of the text placard
gives the Star Wars crawl (b) The same letters cover the same area on the placard
and are used to affinely rectify the crawl. (c) The estimated vanishing line used to
construct the affine-rectifying homography is colored in red. Imaged parallel lines
converge at a vanishing point on the vanishing line. This figure is taken from [14].

The change-of-scale solvers use the Jacobian determinant of the affine-rectifying transforma-
tion to induce constraints on the imaged scene plane’s vanishing line. The Jacobian determinant
measures the local change-of-scale of a differentiable transformation. The first solver to exploit
the change-of-scale constraint for affine rectification was from Ohta et al. [71]. In fact, Ohta
et al. did not explicitly derive their solver using a linearization of the rectifying transform, but
arrived at an affine approximation for imaging local regions by geometric construction. The
change-of-scale of is estimated from the local affine transformations of repeated coplanar tex-
ture.

Criminisi et al. [20] were the first to impose a constraint on the vanishing line from the Ja-
cobian determinant; however, they did not use it to compute the vanishing line. Rather, they
used the fact that the level sets of the derivative of the Jacobian of the rectifying transform are
parallel to the direction of the vanishing line [20]. The vanishing line’s position is recovered ex-
post. Chum et al. [14] were the first to formulate a linear solver from the Jacobian determinant
constraint. Imaged regions whose preimages are the same on the scene plane are used with the
change-of-scale constraint to construct the solver. The derivation of the change-of-scale linear
solver that follows unifies the derivations of Criminisi et al. and Chum et al. .

The inhomogeneous coordinates (x, y)> of the rectified point αx = α
(
x, y, 1

)>
= Hx (refer

to (2.10)) of the imaged point x = (x, y, 1)> on the scene plane is given by the vector-valued
nonlinear function

x(x, y) =
(
x(x, y), y(x, y)

)>
=
(

x
l>x

, y
l>x

)>
.

The function x , which returns the inhomogeneous coordinates of the rectified point
(
x, y

)>, can
be linearized at (x, y)> with the first-order Taylor expansion,

x(x+ δx, y + δy) = x(x, y) + Jx (l)|(x,y) ·
(
δx, δy

)>
.

The Jacobian determinant det
(
Jx (l)|(xi,yi)

)
gives the approximate change of scale of the rec-

tifying function x near the point (x, y)>. Let si be the scale of an image region Ri with its
centroid at

(
xi, yi

)>, where the preimageRi ofRi is on some scene plane Π. Let si be the rec-
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2 Radially-Distorted Cameras Viewing a Scene Plane

Figure 2.3: Conjugate Translation. A translation of coplanar scene points {Xi,Xj ,Xk } by U
induces a conjugate translation Hu in the undistorted image as viewed by camera
P. Joined conjugately-translated point correspondences xi ↔ x′i , xj ↔ x′j and
xk ↔ x′k must meet at the vanishing point u. Vanishing line l is the set of all
vanishing points of translation directions.

tified scale ofRi and constrain the vanishing line l =
(
l1, l2, l3

)> to the affine subspace l3 = 1.
Then the unknown rectified scale si can be expressed in terms of the imaged scale si and the
Jacobian determinant as

si = si det
(
Jx (l)|(xi,yi)

)
=

si
(l1xi + l2yi + 1)3

. (2.19)

Let regions Ri and Ri′ have the same preimage on the scene plane. Then si =si′ and the
unknown rectified scale can be eliminated by setting equal

si′(l1xi + l2yi + 1)3 = si(l1xi′ + l2yi′ + 1)3, (2.20)

which implies

( 3
√
si′xi − 3

√
sixi′)l1 + ( 3

√
si′yi − 3

√
siyi′)l2 = 3

√
si − 3

√
si′ . (2.21)

Each pair of regions with the same preimage gives one constraint equation of the form (2.21).
There are two unknowns, namely l1, l2, thus two pairs of regions with the same preimage are
needed to solve for the orientation of the vanishing line. Note that in the overdetermined case,
(2.21) is an algebraic least squares problem, so a whitening transform should be applied to the
measurements [31]. An affine whitening transform will change all imaged regions by a global
scale factor, which can be eliminated from (2.21). Finally, using the constraint l3 = 1 gives the
position of the vanishing line l =

(
l1, l2, 1

)>.

The set of solvers of [14, 20, 71] and the unifying derivation provided above is similar to the
change-of-scale solvers that incorporate lens distortion that are proposed in Chapter 6. We call
this group of solvers the change-of-scale solvers and acronymize them as (CS).
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2.9 Computing Affine Rectification

2.9.2 Conjugate Translations

Assume that the scene plane Π and a camera’s image plane π are related point-wise by the
camera P (see (2.8)) so that αx′ = PX′, where α is a non-zero scalar, X′ ∈ Π and x′ ∈ π.
Furthermore, let X and X′ be two points on the scene plane Π such that U = X′ − X =(
ux, uy, 0

)>. By encoding U in the homogeneous translation matrix T, the points X and X′ as
imaged by camera P can be expressed as

αx′ =PX′ = PTX = PTP−1x = Hux

s.t. T =

1 0 ux
0 1 uy
0 0 1

 ,
(2.22)

where the homography Hu = PTP−1 is called a conjugate translation because of the form of
its matrix decomposition, and points x and x′ are in correspondence (denoted x ↔ x′ ) with
respect to the conjugate translation Hu, [32, 82].

Decomposing Hu into its projective components gives

αx′ = Hux =

PI3P
−1 + P

uxuy
0

P−>
0

0
1

>
x

= [I3 + suul>]x

(2.23)

where I3 is the 3 × 3 identity matrix, and, also consulting Figure 2.3 to relate the unknowns to
the geometry,

• line l is the imaged scene plane’s vanishing line,

• point u is the vanishing point of the translation direction,

• and scalar su is the magnitude of translation in the direction u for the point correspon-
dence x̃ ↔ x̃′ [82].

Detection and Grouping of Repeated Elements Using Conjugate Translations

The method of Schaffalitzky and Zisserman [82] uses constraints induced by conjugate transla-
tions to detect and group repeated coplanar scene content in images. A conjugate translation is
proposed in a hypothesize and verify framework, where at any point during sampling, the veri-
fied conjugate translation is the proposal consistent with the largest subset of an imaged lattice.
The vanishing points of the imaged lattice are used to recover the vanishing line and to con-
struct conjugate translations. The proposed conjugate translations are used in a guided search to
discover conjugately-translated texture.

The use of translated planar scene texture to estimate conjugate translations is similar to
method proposed in Chapter 5, which formulates the concept of a radially-distorted conjugate
translation and proposes solvers to estimate it.
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2 Radially-Distorted Cameras Viewing a Scene Plane

2.10 Computing Metric Rectification

The metric-rectifying homography, as parameterized by the coordinates of the image of the
circular points, is given in (2.17) and 2.16. Metric rectification is either directly computed
or estimated as a metric upgrade to an affine rectification. Metric invariants are expressed as
algebraic constraints, which are typically parameterized as the image of the circular points as
their unknowns or the conic dual to the image of the circular points, from which the image of the
circular points can be recovered [32]. The next sections discuss methods from the state-of-the-art
for computing metric-rectifying homographies.

2.10.1 Estimation From Imaged Orthogonal Line Segments

The parameters of HM , namely the coordinates of the imaged circular points, can be estimated
linearly from correspondences of imaged orthogonal line segments [56, 32]. The conic dual to
the circular points is C∗∞ = IJ> + JI>, where I =

(
1, i, 0

)> and J =
(
1,−i, 0

)>, and C∗∞ is
a rank two matrix. The conic dual to the circular points as imaged by P is PC∗∞P

>. Estimation
of C′∗∞ also determines the coordinates of the imaged circular points from which HM can be
constructed (see (2.14)). It can be shown that orthogonal lines are conjugate with respect to C′∗∞,
i.e., if m and m′ are images of orthogonal lines, then

m>C′∗∞m′ = 0. (2.24)

Five orthogonal line pairs, where at least two pairs have different orientations, are sufficient
to estimate C′∗∞. If the rank two constraint is imposed on C′∗∞, then four lines are sufficient, but
the problem becomes nonlinear [56, 32].

If the affine rectifying homography H is known, then two degrees of freedom can be eliminated
since the vanishing line is known. The affine-rectified image of the conic dual to circular points
HC′∗∞H

> is rank two by construction, thus only two lines are needed to estimate the affine upgrade
[56, 32].

2.10.2 Estimation From Imaged Circles

Two conics in general position whose preimages are circles intersect at the image of the circular
points. The points of intersection of two ellipses can be found by solving a quartic, which gives
two pairs of complex conjugate solutions. The pair that lies on the vanishing line of the scene
plane are the image of the circular points. Once these coordinates are recovered, the metric
rectifying homography is easily computed, e.g. by constructing HM from (2.14).

This technique is not particularly useful. Typically there is not an abundance of circles in
the scene. Unbiased estimation of ellipses requires a nonlinear least squares fit or a bias-
renormalized fit such as the one proposed by Taubin [88]. Most importantly, ellipses do not
distort to a simply parameterized closed curve under lens distortion, which complicates joint
undistortion and rectification—a major topic of this thesis.
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2.10 Computing Metric Rectification

(a) Glide-Reflected Congruent Line Segments (b) Translated Free Vectors

Figure 2.4: Glide-Reflected Congruent Line Segments. The first row is in a semi-metrically rec-
tified frame, and the second row is in an affine frame. (a) Correspondences of line
segments that are congruent in the scene are colored the same. (b) The line segments
are interpreted as free vectors and are translated to the origin. (c) Corresponded con-
gruent line segments are on the perimeter of the same circle in the world space and
on the perimeter of the same ellipse in the affine-warped space.

2.10.3 Estimation from Equal Angles and Length Ratios

Metric rectification is typically computed as the metric upgrade of an affine rectification since
fewer feature correspondences are required from this sequential estimation than directly esti-
mating the metric rectification. The following paragraphs describe the process of upgrading an
affine-rectified imaged scene plane to a metrically-rectified imaged scene plane using constraints
on the metric upgrade induced by metric invariants.

Solving Quadratic Systems

Liebowitz et al. [56] derived quadratic constraints on the coordinates of the affine-rectified image
of the circular points, from which the metric upgrade can be constructed (see (2.14)). Liebowitz
et al. showed that pairs of line segments with 1. known angle 2. equal but unknown angle, and
3. known length ratio can be combined in a quadratic system of equations to determine the
affine-rectified image of the circular points. The approach of Liebowitz only admits minimal
samples, and thus precludes estimating the affine upgrade using additional measurements.
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2 Radially-Distorted Cameras Viewing a Scene Plane

Linear Solvers

This thesis introduces the linear solvers for metric upgrades from glide-reflected and rigidly-
transformed line segments, which are used throughout the thesis, especially in Chapters 5 and
6 to synthesize fronto-parallel views of affine-rectified imaged scene planes. These solvers are
simple to implement and admit over-determined solutions.

Ratios of distance are not invariant to an affine transformation: the length of vectors in dif-
ferent directions are affected differently by an affine transformation. The derived constraints
are linear, so they are simple to implement and efficient to use in a RANSAC-like robust esti-
mator [24]. Fast estimation can be achieved from minimal sampling, or a more accurate least-
squares solution can be obtained from many sets of line segments with the same lengths in the
scene.

The length of corresponding imaged line segments will be used to design constraints for es-
timating the metric upgrade A. Depending on the arrangement of the line segments, either a
semi-metric or metric upgrade is possible. The semi-metric upgrade has a scale ambiguity in
one direction. Let the semi-metric upgrade be denoted A. Then the relation between the metric-
rectified point X, the affine-rectified point x , and the imaged point x is given by

αX = Ax = AHx, (2.25)

where H is an affine-rectifying homography.

For the derivations of the proposed upgrades, the use of the inhomogeneous representation
of points will be more convenient. Let x be a inhomogeneous image point, x be an affine-
rectified inhomogeneous point and X be a metric-rectified or scene plane inhomogeneous point.
Since transforming a line segment by a translation has no effect on its length, lengths of free
vectors will be studied. Given a line segment AB, the endpoint A is chosen as the origin of the
affine frame and x =

(
x, y
)>

= B − A are the coordinates of the free vector defined by the
line segment. This construction implies that the translation component of the unknown metric
upgrade A need not be considered.

Axial Symmetry This paragraph examines the configuration of line segments that are re-
flected about an axial symmetry. Such a configuration frequently occurs on man-made objects,
especially on building facades [97]. Let the coordinates of two free vectors constructed from
glide-reflected line segments be denoted x and x′. By glide-reflection, we mean a symmetry
operation that consists of a reflection over a line and then translated along that line. Without
loss of generality, we assume that the axis of reflection is a vertical line on the scene plane. The
geometry of computing a semi-metric upgrade from congruent glide-reflected line segments is
shown in Figure 2.4. Thus, we are looking for an affine transformation K ∈ R2×2 with rows k>1
and k>2 such that

diag(−1, 1)Kx = Kx′. (2.26)
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2.10 Computing Metric Rectification

(a) Glide-Reflected Feet (b) Semi-Metric Rectification

Figure 2.5: Semi-Metric Rectification from Glide-Reflections. (a) Image containing a glide re-
flection. (b) Semi-metric rectification of floor from congruent line segments ex-
tracted from the feet. There is a scale ambiguity along the reflection axis.

This leads to a set of two homogeneous equations

k>1 (x + x′) = 0, and (2.27)

k>2 (x − x′) = 0. (2.28)

A single pair of points x, x′ is enough to compute k1 and k2 up to a scalar factor. Any upgrade
matrix A constructed such that

A =

α1k
>
1 0

α2k
>
2 0

0 0 1

 (2.29)

for non-zero scalars λ1,2 will semi-metrically rectify the affine-rectified imaged scene plane.
The rectification has an ambiguity of an anisotropic scaling along the direction of the axis of
symmetry, the overall scale, and the rotation, which is fixed by aligning the axis of symmetry
with a vertical line.

Rigidly Transformed We will assume that a scene plane has corresponded sets of rigidly-
transformed line segments with each set having at least 2 lines. Let the sets be indexed by j,
the length of a line in set j be rj , and the coordinates of a free vector constructed from the
rotated line segment i in set j on the scene plane be Xij . Then the length constraint for scene or
metric-rectified points can be written as

X>ijXi′j = r2
j . (2.30)

Substituting the metric upgrade of affine-rectified points for the scene points in (2.30) gives the
constraint on the metric upgrade K as

X>ijXi′j = x>ijK
>Kxi′j = x>ijΣxi′j = r2

j , (2.31)
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2 Radially-Distorted Cameras Viewing a Scene Plane

(a) Rigidly-Transformed Segments (b) Translated Free Vectors (c) Geometry of Constraints

Figure 2.6: Rigidly-Transformed Congruent Line Segments. The first row is in a Euclidean
frame, and the second row is an affine frame. (a) Correspondences of line segments
that are congruent in the scene are colored the same. (b) The line segments are in-
terpreted as free vectors good. and are translated to the origin. (c) Corresponded
congruent line segments are on the perimeter of the same circle in the Euclidean
frame and on the perimeter of the same ellipse in the affine frame.

where Σ = KTK. Solving for the symmetric matrix Σ instead of directly for K enables the prob-
lem to be formulated as algebraic least squares. The geometry of the problem formulation is
depicted in Figure 2.6. The geometric constraint in the world space is that free vectors con-
structed from congruent line segments in the world space are on a circle with diameter rj . In
the affine-warped space, the free vectors are on an ellipse. Free vectors with the same length are
color coded.

In equation 2.31, Σ is an ellipse (visualized in Fig. 2.6c), where

Σ =

(
a b
b c

)
. (2.32)

Equation (2.31) can be rewritten as

(x2
ij 2xijyij y2

ij − 1)(a b c r2
j )
> = 0, (2.33)

which gives a system of homogeneous linear equations. There are three unknowns for Σ, and
each set of imaged congruent line segments adds one unknown rj . Each line segment in general
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2.11 Radial Lens Undistortion

(a) Barrel Distorted Image (b) Undistorted with Division Model

Figure 2.7: Lens Undistortion. (a) Chessboard captured with a GoPro Hero 4 (b) Image undis-
torted with the division model of lens undistortion. The one-parameter model is able
to undistort the image such that the projective invariant that projected straight lines
have to be straight is restored. [22].

position (rotation) adds one constraint. For two pairs of line segments, there are 3 + 2 = 5
unknowns and four linear equations, giving a one-dimensional linear space of solutions. An
alternative minimal solution is given by one triplet of reflected line segments, having 3 + 1 = 4
unknowns and 3 linear equations. The affine transformation can be derived from the solution
of the system of linear equations (2.33) up to a scale factor and a rotation. The unknown scale
comes from the homogeneous nature of the system–both Σ and r2

i s can be multiplied by a pos-
itive scalar. The unknown rotation comes from the ambiguity of the Cholesky decomposition
Σ = K>K = K>R>RK, where R is a rotation. The homogeneous metric upgrade A can be recon-
structed from the upper triangular K factored from Σ as

A =

[
K 0

0 0 1

]
. (2.34)

A rotation by 180 degrees (or an integer multiple) creates a special case: if the pattern is only
rotated by integer multiplications of 180 degrees, then the matching vectors lie on parallel lines.
Since affine transformations affect the lengths of vectors on parallel lines equally, the situation
is similar to the pure translation case with full affine ambiguity.

2.11 Radial Lens Undistortion

Affine rectification as given in (2.10) is valid only if x is imaged by a pinhole camera. Cameras
always have some lens distortion, and the distortion can be significant for wide-angle lenses.
For a lens distorted point, denoted x̃, an undistortion function f is needed to transform x̃ to
the pinhole point x. We use the one-parameter division model to parameterize the radial lens
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2 Radially-Distorted Cameras Viewing a Scene Plane

(a) Rigidly-Transformed Floor Tiling (b) Metric Rectification

Figure 2.8: Metric Rectification from Rigidly-Transformed Line Segments. (a) Image containing
rigidly-transformed line segments. (b) Metric rectification of floor from congruent
line segments. Note that the room corner is restored to a right angle in the metric-rec-
tified image.

undistortion function
γx = f(x̃, λ) =

(
x̃, ỹ, 1 + λ(x̃2 + ỹ2)

)> (2.35)

where x̃ =
(
x̃, ỹ, 1

)> is a feature point with the distortion center subtracted.
The strengths of this model were shown by Fitzgibbon [26] for the joint estimation of two-

view geometry and non-linear lens distortion as given by (2.35). The division model is especially
suited for minimal solvers since it is able to express a wide range of distortions (e.g., see second
row of Figure 5.3) with a single parameter (denoted λ), as well as yielding simpler equations
compared to other distortion models.

For the remainder of the derivations, we assume that the image center and distortion center
are coincident and that x̃ is a distortion-center subtracted point. While this may seem like a
strong assumption, Willson et al. [95] and Fitzgibbon [26] showed that the precise positioning
of the distortion center does not strongly affect image correction. Furthermore, we will see in the
experiments of Chapter 5 and Chapter 6 that the proposed method is robust to deviations in the
distortion center. Importantly, no constraints are placed on the location of the principal point of
the camera by these assumptions, which is an influential calibration parameter [95]. However,
the choice to fix the distortion center at the image center does make it difficult to remove a
modeling degeneracy at the image center, which will be discussed in detail in Chapters 5.7 and
6.

2.11.1 Rectification of Radially-Distorted Points

Affine rectified points xi can be expressed in terms of distorted points x̃i by substituting (2.35)
into (2.10), which gives

αx =
(
αx, αy, α

)>
= H(l)f(x̃, λ) =(

x̃, ỹ, l1x̃ + l2ỹ + l3(1 + λ(x̃2 + ỹ2))
)>
.

(2.36)
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2.11 Radial Lens Undistortion

(a) Barrel Distorted Image with Labeling (b) Undistorted Images

(c) Rectified Chessboards

Figure 2.9: Rectification from Radially Distorted Points. The chessboard scene was undistorted
and rectified using a minimal solver that jointly estimates lens distortion and rec-
tification. (a) The corners of each chessboard are color coded with the distorted
image of the vanishing line. The radially-distorted conjugate translations used in
the estimation are color coded with the distorted vanishing point where they meet.
(b) Undistorted with the division model. (c) Each chessboard is metrically-rectified.

Interestingly, the rectifying function H(l)f(x̃, λ) in (2.36) also acts radially about the distortion
center, but unlike the division model in (2.35), it is not rotationally symmetric.

Figures 5.3 and 5.7 render the distorted vanishing line in the source images, which affirm the
accuracy of the rectifications by the proposed solvers.

2.11.2 Rectification From Distorted Parallel Scene Lines

Under the division model, the radially-distorted images of scene lines are circles [10, 26, 86, 92].
Antunes et al. [3] and Wildenauer et al. [94] are two methods that jointly undistort and rectify
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2 Radially-Distorted Cameras Viewing a Scene Plane

lens-distorted images using minimal solvers that admit circles fitted to the contours of imaged
parallel scene lines.

The solver of Wildenauer et al. [94] requires five circular arcs, three of which are used to
estimate the first vanishing point, which is formulated as a function of the division model pa-
rameters, and the remaining two arcs are undistorted to lines and used to compute the second
vanishing point. The solver of Antunes et al. [3] estimates lens undistortion, distortion center
and rectification from seven fitted circles, where the vanishing points are formulated as functions
of the division model parameter and distortion center.

The requirement for sets of parallel scene lines is a strong scene content assumption. Chap-
ters 6 and 5 introduce solvers that can jointly undistort and rectify from imaged coplanar repeated
texture, which complements the arc based methods of Wildenauer et al. and Antunes et al. .

2.11.3 Radial-Distortion Homographies

The radial-distortion homography solvers jointly compute the full homography (eight degrees
of freedom) with the lens undistortion parameters [26, 45]. These solvers are typically used
to estimate the homography for panorama stitching or to estimate the change of basis between
two lens-distorted cameras viewing the same scene plane, but they can also be used to estimate
distorted imaged rigid transforms on the scene plane, which includes conjugate translations.

Figure 2.10: Radial-Distortion Homography. The images in each panorama were stitched using
the radially-distorted homography estimated by the solvers proposed by Kukelova
et al. [45]. This figure is taken from [45].

For estimating distorted imaged rigid transforms, the input to the radial-distortion homogra-
phy solvers are five points that are consistent with the same rigid transform in the scene plane.
The solver of Fitzgibbon et al. [26] returns one radial distortion parameter, while the solver of
Kukelova et al. [45] returns two parameters (the assumption is that there can be two cameras
with different distortions viewing the scene). In both these solvers radial distortion is modeled
using the one parameter division model of (2.35).

The solver of Fitzgibbon et al. has nine degrees of freedom, while the solver of Kukelova et
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2.12 Warp Error

al. has ten. In contrast, a conjugate translation has only four degrees of freedom. If the division
model is used for lens distortion then the distorted conjugate translation has five degrees of
freedom. Thus the radial-distortion homography has an extra degree of freedom that can be
used to fit noise in the measurements.

The radial-distortion homography solvers of Fitzgibbon et al. [26] and [45] are compared with
the joint undistortion and affine-rectifying solvers proposed in Chapters 5 and 6 for estimating
lens-distortion and radially-distorted conjugate translations.

2.12 Warp Error

Since the accuracy of scene-plane rectification is a primary concern in this thesis, a warp error
that jointly measures the accuracy of the estimated lens undistortion and rectifying homography
is introduced. In synthetic experiments for virtual scenes, the scene plane is tessellated by a
10x10 square grid of points {Xi }100

i=1 and imaged as { x̃i }100
i=1 by the lens-distorted ground-

truth camera. The tessellation ensures that error is uniformly measured over the scene plane.
For real images, extracted features on the segmented imaged scene plane are used to measure
rectification accuracy.

A round trip between the image space and rectified space is made by affine-rectifying { x̃i }100
i=1

using the estimated division model parameter λ̂ and rectifying homography H(̂l) (see (2.10)) and
then imaging the rectified plane by the ground-truth camera P. Ideally, the ground-truth camera P
images the rectified points {xi }i onto the distorted points { x̃i }i. There is an affine ambiguity,
denoted A, between H(̂l) and the ground-truth camera matrix P. The ambiguity is estimated
during computation of the warp error,

∆warp = min
A

∑
i

d2(x̃, fd(PAH(̂l)f(x̃, λ̂)), λ), (2.37)

where d(·, ·) is the Euclidean distance, fd is the inverse of the division model (the inverse of
(2.35)).

Rectification accuracy is reported as the RMS warp error computed over all grid points. The
chessboard corners in Figure 2.11 provide the grid points from which ∆warp

RMS is computed. Reg-
istration errors caused by inaccurate rectifications are shown as false colors in Figure 2.11. The
warp error increases from left to right, which gives some geometric intuition regarding the mag-
nitude of registration errors for different ∆warp

RMS values on a 2250 × 3000 px pixel resolution
image.
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2 Radially-Distorted Cameras Viewing a Scene Plane

(a) 18 px ∆warp
RMS (b) 42 px ∆warp

RMS (c) 103 px ∆warp
RMS

Figure 2.11: Warp Error Visualization. Registration error of the ground-truth camera imaging
the rectified scene plane is shown in false colors. The ground truth camera is esti-
mated offline with a calibration toolbox that incorporates the division model. The
warp error increases from left to right to give geometric intuition of how the regis-
tration error relates to ∆warp

RMS. The resolution of the image is 2250× 3000 px.
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3 The Correspondence Problem for
Imaged Coplanar Repeats

In general, the goal of the correspondence problem is to match salient image regions that corre-
spond to the same scene content. Region correspondences can be used to induce constraints on
camera calibration and scene structure parameters and are used as inputs of estimators for single
and multi-view geometry problems. The correspondence problem is challenging because of the
effects of perspective warp, radial distortion and viewpoint change as well as scene variations
caused by different lighting conditions and partial occlusions. In practice, correspondence is
made between local regions that have a similar texture. Raw pixels are typically not used to
measure texture; instead, a nonlinear transformation, usually called an embedding, transforms
the region’s texture into a high-dimensional vector (e.g., 128-dimensional). An embedding is
also called a descriptor in the computer-vision literature.

Region detectors are designed such that they are covariant to geometric transformations. Co-
variance with a geometric transformation ensures that the detection of a region warps with a
warp of the region. Embeddings are designed or learned such that they are invariant to geomet-
ric and photometric transformations and discriminative, meaning that embeddings that describe
distinctive scene content should be far away from each other in the embedded space. Invari-
ance of the region embedding enables robust region matching across varying viewpoints and
lighting conditions, while discriminability increases the likelihood that matched image regions
correspond to repeated scene content.

These properties, covariance of detection and invariance and discriminability of description,
are combined to robustly correspond coplanar repeats. The following sections detail these con-
cepts and introduce the region detectors and embeddings that are used to identify and match
imaged coplanar repeated scene texture.

In the context of imaged coplanar repeats, solving the correspondence problem means parti-
tioning the set of region detections such that the preimages of the detections of a non-singleton
subset are near copies of coplanar textures. See Figure 3.1 for an example. The singletons
represent region detections of non-repeating texture. The correspondence problem for coplanar
repeats differs distinctly from the two-view geometry setting in that two view correspondences
are one-to-one whereas coplanar repeats have a many-to-many relationship. E.g., for one set of
n coplanar repeats, there are

(
n
2

)
correspondences.
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3 The Correspondence Problem for Imaged Coplanar Repeats

(a) Detected Repetitions (b) Normalized Patches

Figure 3.1: Imaged Coplanar Repeats. (a) The colored dots are the centroids of regions cor-
responded as imaged coplanar repeats. (b) The rows of same-colored boxes show
corresponded sets of imaged coplanar repeats that are transformed to a normalized
reference frame by an affinity. The nearly same appearances in the normalized frame
show that coplanar repeats can be approximately registered by an affine transform.
Note that the centroids of the blue and yellow-coded repeats are coincident, which is
why the blue dots are occluded, but the region shape and extents are different.

3.1 What is a Coplanar Repeat?

Let {Xi ↔ X′i }i be a set of coplanar point correspondences. Let T be a homogeneous rigid
transform and define the rigid transformation of the point set {Xi } as

TT({Xi }) = { TXi | Xi ∈ {Xi } }. (3.1)

We say that {X′i } is a repeated point set of {Xi } (and vice versa) if and only if there exists a
homogeneous rigid transform matrix T such that {X′i } = TT({Xi }).

Let Ri and Rj denote coplanar regions that are connected and compact subsets of a scene
plane Π. Then region Rj is a coplanar repeat if and only if it is a repeated point set (or simply
a repeat) to regionRi.

3.1.1 Imaged Rigid Transforms

Assume that the scene plane Π and a camera’s image plane π are related point-wise by the
homography P, so that αx = PX, where α 6= 0, X ∈ Π and x ∈ π (see Section 2.3 and
Section 2.4). Let X and X′ be two points on the scene plane Π such that X′ = TX, where T is
a homogeneous rigid transform matrix.Then the points X and X′ as imaged by camera P can be
expressed as

αx′ = PX′ = PTX = β PTP−1︸ ︷︷ ︸
HT

x =⇒ γx′ = HTx, (3.2)
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3.1 What is a Coplanar Repeat?

(a) Translations (b) Reflections (c) Rectification

Figure 3.2: Wallpaper Rectification. The tennis court is a finite subset of a wallpaper pattern
from which its symmetries are used to rectify the ground plane. (a) Translational
symmetries are detected in the original image, (b) reflections are detected in the
reflected image and then warped into the original image, and (c) The solvers of
Chum et al. and Pritts et al. rectify the ground plane from symmetries [14, 74].

where β 6= 0 and γ = α/β. We say that the points x and x′ are in correspondence with respect
to the imaged rigid transform defined by the homography HT = PTP−1.

3.1.2 Radially-Distorted Imaged Rigid Transforms

Correspondence with an imaged rigid transform as derived in (3.2) is valid only if x is imaged
by a rectilinear camera (see Section 2.3). Cameras always have some lens distortion, and the
distortion can be significant for wide-angle lenses. In this text, the radial undistortion function
is assumed to be the division model [26], which is defined in Section 2.11.

Incorporating radial undistortion into (3.2) gives the function of rigidly-transformed scene-
plane points imaged by a lens-distorted camera

γx̃′ = g(x̃, HT, λ) = fd(HTf(x̃, λ), λ), (3.3)

where fd denotes the radial lens distortion function. In the following sections, g(x̃, HT, λ) deter-
mines how scene points rigidly transformed by T and imaged by a radially-distorted camera are
related.

3.1.3 Imaged Coplanar Repeats

Let R̃ and R̃′ denote regions in a lens distorted image. Thus if all x̃ ∈ R̃ and x̃′ ∈ R̃′ are
corresponded by an imaged rigid transform g(·, HT, λ), then the preimages of R̃ and R̃′, namely
R and R′, are related by the rigid transform T, which is defined as a sufficient condition in
Section 3.1 for the preimages R, R′ to be a coplanar repeat. This motivates the name im-
aged coplanar repeat for regions R̃ and R̃′ that are registered by the imaged rigid transform
g(·, HT, λ).

While the concept of a coplanar repeat is formalized, in practice, the definition will be relaxed
to account for the limitations in the repeatability of the region detectors, measurement noise and
simplifying modeling assumptions. The image patches in Figure 3.1b have been normalized to a
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3 The Correspondence Problem for Imaged Coplanar Repeats

(a) Arbitrarily Placed KitKats (b) Rectified (c) Segmented Repeated Texture

Figure 3.3: Rigidly Transformed Coplanar Repeats. (a) Each pair of KitKats is registered by a
unique rigid transform. (b) The solvers of Chum et al. and Pritts et al. admit inputs
of rigidly-transformed coplanar repeats to metrically-rectify the scene plane [14, 74]
(c) Segmented coplanar repeats are used to densely segment the KitKats from the
background using the method of Cech et al. [13].

common reference plane to demonstrate how closely an approximation to g(·, HT, λ) can register
the coplanar repeats corresponded in Figure 3.1a.

3.1.4 Relating Planar Symmetries to Coplanar Repeats

In general, the definition of symmetry is relaxed by computer-vision practitioners. For example,
a translational symmetry is a group law of a frieze or wallpaper group, which are unbounded
sets, but the term is often applied to imaged translated coplanar repeats [28, 59, 58]. E.g., a
finite subset of a frieze or wallpaper pattern is not closed under the actions of a translational
symmetry. The tennis courts in Figure 3.2 are a finite subset of a wallpaper group from which
its translational symmetries in Figure 3.2a and reflections in Figure 3.2b are used to rectify the
ground plane, which is shown in Figure 3.2c.

Coplanar repeats are closely related to symmetries. Let T be a planar symmetry of the set S
so that S = TT(S) and letRi ⊂ S andRj = TRi. ClearlyRj ⊂ S andRj is a coplanar repeat
ofRi. This implies that the symmetry T can be recovered from coplanar repeats that are subsets
of a symmetry group.

However, the images of coplanar repeats that are not members of a symmetry group also
put strong constraints on undistortion and rectification and are useful for scene segmentation.
Thus, the goal is to use the constraints induced by all imaged coplanar repeats. Suppose three
coplanar repeats Ri,Rj and Rk are placed on a scene plane. Regions Ri,Rj and Rk are not
necessarily in a symmetry group, but if their imagesRi,Rj , andRk are corresponded, then they
can be inputted to a solver to compute the metric rectification of the imaged scene plane [14,
20, 71, 74, 82]. Figure 3.3 contains arbitrarily placed KitKats on a table. The imaged KitKats
provide provided the necessary constraints as imaged coplanar repeats to metrically rectify (see
Figure 3.3b).
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3.2 Covariant Regions

3.1.5 Approximate Imaged Rigid Transforms

The Euclidean coordinates
(
x̃′, ỹ′

)> of an imaged rigidly-transformed point is given by the
vector-valued nonlinear function

x̃′(x̃, ỹ, HT, λ) =
(
x̃′(x̃, ỹ, HT, λ)/γ(x̃, ỹ, HT, λ), ỹ′(x̃, ỹ, HT, λ)/γ(x̃, ỹ, HT, λ)

)>
, (3.4)

where λx̃′ =
(
x̃′(x̃, ỹ, HT, λ), ỹ′(x̃, ỹ, HT, λ), γ(x̃, ỹ, HT, λ)

)
= g

((
x̃, ỹ, 1

)>
, HT, λ

)>
. The

function x̃′, which returns the inhomogeneous coordinates of the imaged rigidly-transformed
point

(
x̃′, ỹ′

)>, can be linearized at
(
x̃, ỹ

)> with the first-order Taylor expansion,

x̃′(x̃ + δx̃ , ỹ + δỹ , HT, λ) = x̃′(x̃, ỹ) + Jx̃′(HT, λ)|(
x̃, ỹ

) · (δx̃ , δỹ)> . (3.5)

Let A denote the 2× 2 affine matrix Jx̃′(HT, λ)|(
x̃, ỹ

). Substituting A into (3.5) gives

x̃′(x̃ + δx̃ , ỹ + δỹ , HT, λ) = x̃′(x̃, ỹ) + A
(
δx̃ , δỹ

)>
. (3.6)

Thus, if x̃ in R̃ and x̃′ in R̃′ are in correspondence with an imaged rigid transform g(x̃, HT, λ)
and if the imaged coplanar repeats R̃ and R̃′ are sufficiently small, then all points in R̃ and R̃′
are approximately related by an affinity. This fact motivates the use of region detectors that
covary with affine transformations of the image, which will be introduced in Section 3.2. Fig-
ure 3.1 demonstrates that an affine transformation is sufficient to approximately register imaged
coplanar repeated textures, which empirically verifies (3.6). The image patches from the copla-
nar repeats detected in Figure 3.1a are affinely warped into a common reference frame in Fig-
ure 3.1b, where they have similar appearances. Another example is shown in the third row of
Figure 3.6.

3.2 Covariant Regions

Suppose that T (·) is a warp that can be applied to image I . A region detector that is covariant
with respect to T will extract regions {R1, . . . Rn } from I and regions {T (R1), . . . T (Rn) }
from T (I) (see Figure 3.4). The repeatability of a detector measures the amount the detector
covaries with respect to a given transformation T [64]. A region is labeled repeatable with
respect to transformation T if the Jaccard distance threshold between T (R1) andR2 is less than
some threshold,

1− R1 ∩ T (R2)

R1 ∪ T (R2)
< ε, (3.7)

The threshold ε controls the amount of tolerated overlap error with respect to a given transfor-
mation class. The repeatability of a detector is measured over many examples, and T is usually
sampled from the same transformation class, e.g., T is a homography. A visualization of contour
extraction exhibiting good repeatability is shown in Figure 3.8b, while Figure 3.8c shows bad
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3 The Correspondence Problem for Imaged Coplanar Repeats

Figure 3.4: Region Covariance. An affine-covariant region detector is run on the original image
I and its affine warp T (I). The detected region R′ in the warped image is the warp
of the detection T (R) in the original image. The figure is taken from [91].

repeatability.
The same region viewed from two cameras may appear radically different, and, indeed, the

transformation that preimagesR1 from the first camera and images it asR2 in the second camera
is highly non-linear [23]. As shown in Section 3.1.5, imaging transformations can be approxi-
mated locally by linearizations, which typically have fewer degrees of freedom. Thus repeatabil-
ity is expected to be higher for smaller regions, where the linearization has a low approximation
error. The state-of-the art region detectors are covariant up to an affinity [64, 66].

The methods proposed in this thesis are agnostic to the specific type of covariant detector
used, but all proposed methods have either similarity or affine-covariance as a necessary prop-
erty. Section 3.2.3 discusses the parameterization used in this thesis to represent covariant re-
gions. Ultimately, the covariant region parameterization is a compact representation for the local
geometry of a coplanar repeated pattern.

Term Description

R,R,R̃ affine-rectified, rectilinear and distorted covariant region
detections

Table 3.1: Notation for Covariant Regions.
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3.2 Covariant Regions

(a) Covariant Region Detection (b) Affine-Invariant Representation

Figure 3.5: Affine-Invariant Region Representation. (a) The boundary of the low intensity re-
gion (cyan) is used to estimate the second moment matrix (red ellipse). The ellipse
establishes the shape and extent of the covariant region R. The most distant point
from the center of gravity of the contour is used to fix the orientation. (b) The el-
lipse is warped to the unit circle and the orientation is aligned with the x-axis in the
normalized frame. The figure is taken from [70].

3.2.1 Region Notation

Covariant regions are denotedR if an image is from a camera with a rectilinear lens, or R̃ if an
image is from a camera with a radially-distorted lens. In practice, the same detector is used in
both cases, but a distinction is necessary to develop the theory in Chapters 5 and 6. The preimage
and rectified image of an imaged covariant region are both denoted R. Going forward, region
detections are assumed to have the similiarity or affince covariance property. The notation is
summarized in Table 3.1.

3.2.2 Affine-Invariant Region Representation

Section 3.1.5 shows that imaged coplanar repeats can be accurately registered with affinities
if they are sufficiently small. Thus coplanar repeats can be approximately generated as affine
warps of a normalized image patch in a common reference frame, if photometric differences are
ignored. This property simplifies the correspondence problem since the putative coplanar repeats
will have approximately the same appearance in the common reference frame. To establish
the common reference frame, an affine basis is constructed for each covariant region, which is
mapped to the orthonormal basis at the origin, which is shown in Figure 3.5. Examples patches
normalized from the imaged coplanar repeats are shown in Figures 3.1. Examples of different
affine basis constructions from covariant regions are shown in Figure 3.6. More details about
these constructions are discussed in Section 3.2.3.

3.2.3 Covariant Region Parameterization

An affine-covariant regionR is defined by an affine basis in the image coordinate system, which
is called a local affine frame (LAF) in the computer-vision literature. The local affine frame can
be minimally parameterized by three points {x1, x2, x3 }, where x2 is designated as the origin
of the affine basis. The three points are obtained from affine-covariant constructions, which are
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3 The Correspondence Problem for Imaged Coplanar Repeats

(a) Shape from Bi-tangency (b) Shape from Covariance

Figure 3.6: Local Affine Frame Construction Type. (top row) Original image, (middle row)
MSER detection and local affine frame (LAF) construction, (bottom row) normal-
ized patches computed from local affine frames. (a) LAFs are constructed from
bi-tangents of the MSER detections (green contour). The LAF origin is the point in
the concavity most distant from the bi-tangent. (b) The shape and extent of the LAF
is computed from the second central moments (or covariance matrix) of the MSER
detection and the orientation is fixed by a curvature extrema of the contour. Figure
taken from [70].

differential geometric constructions like bi-tangents (see Figure 3.6a) or curvature extrema of
extracted contours, or moments of image features (see Figure 3.6a) [63, 65, 69, 70].

For a similarity-covariant region such as a Difference-of-Gaussian feature with its orienta-
tion set by the dominant gradient of the region, the local affine frame parameterization has the
constraint that x1−x2 ⊥ x3−x2 and d(x1,x2) = d(x2,x3) [60, 91]. Equivalently, similarity-
covariant regions are minimally parameterized by two points.

The local affine frame defines a change of basis given by the orientation-preserving homo-
geneous transformation A that maps from the orthonormal affine basis at the orgin to the image
space as [

x1 x2 x3

]
= A

0 0 1
1 0 0
1 1 1

 , (3.8)

where x2 is the origin of the linear basis defined by vectors x1 − x2 and x3 − x2 in the image
coordinate system [65, 91].
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(a) Point (b) Similarity-Covariant Region (c) Affine-Covariant Region

Figure 3.7: Feature Types. There are three feature types used to represent imaged coplanar re-
peats: (a) Points are extracted from local affine frames that are constructed from
region detections and have two degrees of freedom. (b) Similarity-covariant regions
are returned by the Difference-of-Gaussians (DoG) detector and have four degrees
of freedom. [60] (c) Affine-covariant regions are given by the MSER detector with
LAF upgrade or by the Hessian Affine detector with Baumberg iteration and have six
degrees of freedom [7, 62, 63, 69]. The ambiguity of rotation of the transformation
taking the ellipse to the unit circle is fixed by the point on the ellipse (or circle). The
figure is taken from [91].

Geometric Interpretations of Covariant Regions

Alternately, the geometry of an affine-covariant regionR can be given by an ellipse with a point
on its contour, where the ellipse fixes the translation, anisotropic scaling and skew, and the point
fixes the rotation of the region with respect to the orthonormal affine basis at the origin. The
ellipse is the simplest geometric primitive that can be used as an affine-covariant representation
since the set of ellipses is closed with respect to an affine transformation, where, e.g., the set of
circles is not. An example of an affine-covariant region is illustrated in Figure 3.7c.

The geometry of a similarity-covariant region is given by a circle with a point on its cir-
cumference, where the circle fixes the translation and isotropic scaling, and the point fixes the
rotation of the region with respect to the orthonormal affine basis at the origin. The circle is
the simplest geometric primitive that can be used as a similarity-covariant representation since
the set of circles is closed with respect to similarity transformation.Figure 3.7b illustrates the
geometry of a similarity covariant region.

The matrix of the quadratic form C defining the ellipse of the affine-covariant region R can
be expressed in terms of the change-of-basis matrix A defined in (3.8) as

C = A−>

1 0 0
0 1 0
0 0 −1

 A−1, (3.9)

where the ellipse is given by the locus of xTCx = 0. Thus (3.9) relates the local affine frame
parameterization of affine-covariant regionR to the ellipse that gives the extent and shape ofR,
which defines the patch of the image that can be approximately registered with a coplanar repeat
(see Section 3.1.5) and Figure 3.1.

In the case where second central moments of image features are used (equivalently covari-
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3 The Correspondence Problem for Imaged Coplanar Repeats

ance) to compute the shape and extent of covariant region R, e.g., as shown in Figure 3.6b or
with Hessian Affine features with Baumberg iteration [65, 7], C is the homogeneous form of an
ellipse, where the upper 2× 2 sub matrix is the covariance matrix. In the case where differential
geometric constructions are used, as in Figure 3.6a, C is meaningless with respect to the method
used to construct the covariant region. In both cases, two of the three points of the LAF lie on
the ellipse defined by C.

Note that the matrix quadratic form C is insufficient to define all degrees of freedom of the
affine-covariant region since

C = A−>

1 0 0
0 1 0
0 0 −1

 A−1 = A−>R>z

1 0 0
0 1 0
0 0 −1

 RzA−1 (3.10)

for any rotation matrix Rz about the z-axis such that

Rz =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 . (3.11)

Thus, there is a set of transformations mapping the ellipse C to the unit circle, and the rotation
of the ellipse with respect to the orthonormal frame is undefined if only C is provided. Typically,
either the affine basis {x1, x2, x3 } or the change of basis A is used to define the local affine
frame [91].

In Chapters 5 and 6 the affine basis parameterization is used in several derivations of solvers.
The matrix

[
x1 x2 x3

]
constructed from the affine basis vectors of a local affine frame is used

as a parameterization of affine-covariant regionR, which we call its point-parameterization. It’s
properties will be exploited in Chapter 6.

3.2.4 Maximally Stable Extremal Regions (MSERs)

A maximally stable extremal region (MSER) [62] is bordered by a high-contrast boundary in the
intensity image. MSER level sets can have an arbitrary shape and can include interior bound-
aries; however, an affine-covariant construction is typically estimated from the region, which is
a straightforward low-parameter representation of localized geometry. Example affine-covariant
constructions include representing the region with an ellipse calculated from the first and second
moments of the region (see Figure 3.6b for an example), which was used in the seminal papers of
[62, 65], or extracting affine-covariant points that correspond to differential geometric properties
along the region boundary [63, 69] (see Figure 3.6a for an example).

The region detector thresholds the intensity image at all values of its sampled discretized
range, e.g., t ∈ { 0 . . . 255 }, where t is the intensity threshold. Thresholding creates a nested
sequence of contiguous regions {Q1 . . . Qi }, where Qi ⊆ Qi+1. The extremal region Qi∗ is
maximally stable only if

i∗ = argmin
i

|Qi+δ \Qi−δ|
|Qi|

, (3.12)

40



3.2 Covariant Regions

(a) LAF constructions from MSERs (b) Good Repeatability (c) Bad Repeatability

Figure 3.8: MSERs, LAFs and Repeatability. (a) LAFs (orange) constructed from MSER de-
tections (cyan contours). (b) Two patches extracted from the front building facade
where the MSER detector gives good repeatability. (c) Two patches from the front
building facade where the MSER detector gives bad repeatability.

where δ is a user-supplied parameter, and | · | is set cardinality, which corresponds to the area
of the extremal region. (3.12) selects regions that have stationary area with respect to varying
threshold t.

The first and second central moment of the extremal region are computed as

µi =
1

|Qi|
∑
x∈Qi

x, Σi =
1

|Qi|
∑
x∈Qi

(x − µi)
>(x − µi), (3.13)

where x ∈ Qi are the coordinates of the pixels in the extremal region. This sets the shape and
extent of the affine-covariant region construction R for Qi. The orientation is set either by dif-
ferential geometric property extracted from the boundary (see Figure 3.6b) or by the orientation
of the dominant gradient in the patch local to Qi.
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3 The Correspondence Problem for Imaged Coplanar Repeats

3.2.5 Local Affine Frame upgrade from an MSER

Matas et al. and Obdrzalek et al. [63, 69] show that several affine-covariant constructions can be
extracted from the differential geometry of the boundary of an extremal region. Some examples
of affine-covariant constructions from points extracted from the boundary include (i) extremal
points with respect to the center of gravity after region normalization, (ii) stable bi-tangents and
points maximally distant from the bi-tangents, (iii) and points of extremal curvature. Impor-
tantly, these additional affine-covariant region constructions can be corresponded and used as
constraints on geometry.

3.2.6 Hessian-Affine Regions

The Hessian-Affine detector applies the Hessian operator to the scale-space representation of
the image, which is a sequence of images generated by convolving the intensity image with
Gaussian kernels of increasing variance [57]. The blurring enables the selection of structures at
their characteristic scales in the scale-space representation. The characteristic scale of an image
structure (e.g. a blob) is the scale at which the convolved kernel achieves its maximum response.
Lindberg [57] showed that the selected scale covaries with the relative scale of the same structure
in the image. In practice, the operations of blurring and differentiation are combined using
Gaussian derivatives with the operator

H(x, y, σ) =

[
∂2G(x,y,σ)

∂x2
∂2G(x,y,σ)

∂x∂y
∂2G(x,y,σ)

∂x∂y
∂2G(x,y,σ)

∂y2

]
, where G(x, y, σ) =

1

2πσ2
e−

x2+y2

2σ2 . (3.14)

At each image in the scale space representation, the hessian affine detector returns points that are
simultaneously extrema of both σ2 det(H(x, y, σ)) and σTr(H(x, y, σ)) for x, y in the image-
coordinate system. Jointly requiring extrema of both the determinant and trace prevents the
detection of elongated blobs in the image. An iterative search is used to refine the spatial local-
ization of the detections.

Baumberg Iteration

The scale-covariant detections can be upgraded to affine-covariant constructions through an it-
erative shape-adaptation process known as Baumberg iteration [7]. The scale-covariant Hessian
affine detection (equivalently a circle) is iteratively adapted to an ellipse such that the second
central moment matrix of image gradients in the neighborhood including and surrounding the
ellipse is isotropic after the neighborhood is warped to the normalized coordinate system defined
by a transformation taking the adapted ellipse to the unit circle (note that there is a rotational
ambiguity, which gives a set of sufficient transformations). The second moment matrix MI is
given by the covariance of gradients in the neighborhood of Ω ∈ R2 surrounding the center of a
hessian affine detection

MI =
1

Ω

∫
Ω
∇I∇I>dxdy, (3.15)
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where ∇I =
(
∂G(x,y,σ)

∂x , ∂G(x,y,σ)
∂y

)>
and σ is chosen to filter image noise, which strongly

affects gradient calculations. Let MI be the shape-adapted ellipse with its origin at its midpoint,
and suppose that A is the affine matrix mapping the locus of MI to the unit circle MJ . Then MI
transforms to the unit circle MJ with respect to the affine transformation as[

1 0
0 1

]
= A−>MIA

−1, (3.16)

which implies that MI = A>A.
Any rotation R ∈ R2×2 can be chosen since MI = A>R>RA. The rotation is fixed to map the

dominant gradient orientation of the patch local to the shape-adapted hessian-affine detection to
the x axis in the normalized frame.

3.2.7 Sparse Representation of Coplanar Repeated Patterns

The covariant regions given by the MSER and Hessian-Affine regions (see Sections 3.2.4 and
3.2.6) are detected on image texture with structure that is common to repetitive patterns, i.e.,
blobs, corners, and salient differential geometric properties of contours, such as curvature ex-
trema. Furthermore, these detectors have high repeatability on the same imaged texture, as de-
fined in (3.7), with respect to significant changes of viewpoint and illumination [64, 66]. Their
proven robustness in the multi-view matching task makes them good candidates for representing
the local geometry of repeated textures. Figure 3.9 illustrates the geometric representation of the
scene that is used as input to the undistorting and rectifying solvers proposed in Sections 5 and
6.

3.3 Corresponding Coplanar Repeats

The covariant region detections are corresponded by appearance. The patch local to each co-
variant region is transformed to a normalized frame that provides and invariant representation of
the patch. The process of normalizing a covariant region to a patch that can be embedded to a
descriptor is illustrated in Figures 3.6 and 3.11.

The transformed patches are embedded into high-dimensional feature vectors and are used
to compute pairwise distances, where distance in the feature space is proportional to how close
in appearance the texture local to two covariant regions are. The feature vectors are clustered,
which partitions the covariant regions into sets of repeats and non-repeated content. The results
is tentatively corresponded coplanar repeats based on appearance. The details of this process are
provided in the next sections.

3.3.1 The Scale Invariant Feature Transform (SIFT)

The Scale Invariant Feature Transform (SIFT) characterizes the appearance of an image patch by
embedding a spatial histogram of gradients of the patch texture into a feature vector [60]. A spa-
tial histogram divides the image patch into a grid, where a histogram is computed on the image
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(a) MSER detections (b) MSER+ (c) MSER-

Figure 3.9: Sparse Representation. (a) MSERs are detected. Local Affine Frames (LAFs) are
constructed from contours on the boundaries of high-contrast regions with (b) higher
intensities than the surrounding pixels, called MSER+ and (c) lower intensities than
the surrounding pixels, called MSER-. Note that salient geometric structure is re-
tained by the set of LAF constructions and the pattern is easily discernible in its
sparse representation.

features contained in each grid cell (see Figure 3.10). The image features for SIFT are gradient
orientation and position of the gradient orientation at for each pixel in the cell. The histograms
are concatenated to construct the spatial histogram. The gradient orientations are weighed by
the gradient magnitude and are accumulated in each smaller patch’s histogram, which up to
normalization and clamping is the embedding for the smaller patch. The gradients of the patch
are weighted by a Gaussian with its mean at the patch center, which gives more importance to
gradients at the center of the covariant region. The spatial histogram is constructed in the nor-
malized frame defined by the covariant region detection, which is shown in Figure 3.11. The
construction of the spatial histogram is shown in Figure 3.10. The feature vector is constructed
from the spatial histogram by stacking each orientation bin from each cell along the columns of
the grid. The SIFT embedding of a covariant region R is denoted rS(R). The feature vector is
L2-normalized, ‖rS(R)‖ = 1.

RootSIFT

Arendelovic et al. [4] noted that empirical results from texture classification methods showed
that superior performance resulted from using measures on histograms, such as χ2 or Hellinger
distance, rather than the Euclidean distance between histograms. In particular, the Hellinger
distance is desirable since a simple transformation of the SIFT embeddings as defined in Sec-
tion 3.3.1 allows the Hellinger distance to be computed from the Euclidean distance operator.
This is a pragmatic consideration that allows the Hellinger distance to be used in black-box
feature matching frameworks, where Euclidean distance is hard coded.

In particular, if rS(R) denotes a SIFT embedding of a covariant region R and ‖rS(R)‖ =
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Figure 3.10: SIFT Spatial Histogram. The spatial histogram used by SIFT. (left) The patch is
divided into a grid, where the gradient orientations in each cell are accumulated
and discretized into an eight bin circular histogram. (center) The patch in the nor-
malized frame is centered around the covariant region detection and its extents are
scaled. (right) The gradients are weighted with an isotropic Gaussian kernel with
its mean at center of the covariant region detection, equivalently, the patch. The
figure is taken from [91].

1, then the Euclidean distance d(rS(Ri), rS(Rj)) is related to their similarity kernel, namely
S(rS(Ri), rS(Rj)), as

d(rS(Ri), rS(Rj)) = ‖rS(Ri)− rS(Rj)‖22
= ‖rS(Ri)‖22 + ‖rS(Rj)‖22 + 2rS(Ri)>rS(Rj)
= S(rS(Ri), rS(Ri)) + S(rS(Rj), rS(Rj) + 2S(rS(Ri), rS(Rj))
= 2− 2S(rS(Ri), rS(Rj)),

(3.17)

where S(rS(Ri), rS(Rj)) = rS(Ri)>rS(Rj).

The Hellinger kernel of two N -dimensional embeddings e1 =
(
x1, . . . , xN

)> and e2 =(
y1, . . . , yN

)> is given as

H(e1, e2) =

N∑
k=1

√
xkyk, (3.18)

where xk, yk > 0 and
∑

k xk = 1,
∑

k yk = 1.
Then the Hellinger distance (3.18) between two SIFT embeddings can be computed with the

Euclidean similarity kernel S(·, ·) by enforcing
∑

rk(R) = 1 and taking the element-wise
square root,

S

(√
rS(Ri),

√
rS(Rj)

)
=
√
rS(Ri)

>√
rS(Rj) = H(rS(Ri), rS(Rj)) (3.19)

The RootSIFT method explicitly performs this transformation on the feature vector. Let
rS(R) =

(
x1, . . . , xN

)
be a SIFT vector. Then the RootSIFT embedding r(R) =

(
y1, . . . , yN

)>
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(a) MSER detection (b) Normalized Frames (c) LAF Representation

Figure 3.11: Region Detection and Description. (a) Center of gravity (white cross) and curva-
ture extrema (orange circles) of a detected MSER (orange contour [62]). Patches
are normalized to a square and oriented to define an affine frame as in [63],
(b) Bases are reflected for detecting axial symmetries. The RootSIFT transform
embeds the local texture [4, 60]. (c) Affine frames are mapped back into image.

can be computed from rS(R) =
(
x1, . . . , xN

)> by

yk =

√
xk/

∑
k

xk. (3.20)

The RootSIFT transformation has the effect of reducing the ratio between the largest and
smallest bin values in the histogram. If these ratios are large, then the Euclidean distance be-
tween L2-normalized SIFT embeddings will be dominated by these extremal bins. Arendelovic
et al. [4] showed that the RootSIFT transformation gave dramatic improvements to the mean
average precision of bag-of-words image retrieval systems. In the methods presented in this
thesis, the appearance of patches local to covariant regions are embedded using the RootSIFT
transformation.

3.3.2 Establishing Tentative Coplanar Repeats

Affine frames are tentatively labeled as repeated texture by their appearance. Figure 3.12 shows
an example tentative labeling of coplanar repeats. The appearance of an affine frame is given
by the RootSIFT embedding of the image patch local to the affine frame [4]. Affine-covariant
regions are also extracted and embedded in the reflected image, where the detections are trans-
formed into the original image space such that their orientation is flipped (handedness).

The RootSIFT descriptors are agglomeratively clustered, which establishes pair-wise tenta-
tive correspondences amongst connected components. Denote the RootSIFT embedding of an
affine-covariant region as r(R). The tentative clustering is given by single-link hierarchical
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3.3 Corresponding Coplanar Repeats

Figure 3.12: Tentative Coplanar Repeats. Descriptors of patches local to covariant region detec-
tors are clustered. The local affine frames constructed from the detected covariant
regions are color coded by their cluster label. Covariant regions with the same color
(same cluster label) are tentatively corresponded as coplanar repeats.

agglomerative clustering, which merges two sets of RootSIFT embeddings, denoted Cj , Cj′ , if

min
i∈Cj ,i′∈Cj′

‖r(Ri)− r(Rj)‖22 < t2app,

where tapp is conservatively set to favor over-segmentation and smaller but more precise clusters.
Each appearance cluster has some proportion of its indices corresponding to affine frames that
represent the same coplanar repeated scene content, which are the inliers of that appearance
cluster. The remaining affine frames are the outliers.

Denote the tentative clustering as the collection ofK appearance clusters C = {C1, . . . , CK },
where each appearance cluster is a subset of the indices of the affine frames, and an index occurs
in exactly one appearance cluster, Cj ∩ Cj′ = ∅, where j 6= j′.

3.3.3 Spatial Verification of Tentative Coplanar Repeats

Let { x̃i,k } be the affine basis of a covariant region R̃i detected in a radially-distorted image,
where k ∈ { 1 . . .m } and m is either 2 or 3 for a similarity-covariant or affine-covariant de-
tection. Then the point-wise symmetric transfer error between two imaged coplanar rigidly-
transformed covariant regions R̃i and R̃j is

ε(HT, λ,R̃i, R̃j) =

m∑
k=1

d(x̃i,k, g(x̃j,k, HT, λ))2 + . . .

d(x̃j,k, g(x̃i,k, HT, λ))2,

(3.21)
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(a) All Covariant Region Detections (b) Spatially-Verified Coplanar Repeats

Figure 3.13: Spatially-Verified Coplanar Repeats. (a) LAFs constructed from covariant region
detections. (b) LAFs spatially verified as coplanar repeats. The proportion of re-
gions that are tentatively corresponded and spatially verified, i.e., inliers, is small.
Even after spatial verification there are some errors: E.g., two coplanar repeats
remain that are artefacts of image compression along building edge.

where d(·, ·) is the Euclidean distance. The thresholded symmetric transfer error is used as a
sufficient condition for labeling clustered covariant regions as coplanar repeats. In other words,
if there is HT, λ such that ε(HT, λ, R̃i, R̃j) < t, where R̃i and R̃j are in a covariant region cluster
(as defined in Section 3.3.2), then R̃i and R̃j are coplanar repeats. Figure 3.13 shows what
remains the sparsity of spatial verified coplanar repeats Figure 3.13b) with respect to all detected
regions (see Figure 3.13a). The ratio of good-to-bad regions is quite small, which motivates the
design of the minimal solvers in Chapters 5 and 6 for this problem.

48
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Equations

The polynomial systems of equations encoding the rectifying constraints for a subset of the
proposed solvers in Chapter 5 and all of the proposed solvers in Chapter 6 are solved using
an algebraic method based on Gröbner bases. Automated solver generators using the Gröbner
basis method [44, 48] have been used to generate solvers for several camera geometry estimation
problems [44, 45, 48, 49], see also Chapters 5 and 6.

4.1 The Gröbner basis Method

Camera geometry estimation problems frequently lead to a formulation as a system of multivari-
ate polynomial equations. Estimating geometry as a minimal problem means that the minimal
number of measurements (usually point or feature correspondences) together with all geometric
constraints are used to eliminate extra degrees of freedom from the constraint equations. How-
ever, minimal problems often result in complicated systems of polynomial equations. Since
minimal solvers require the fewest number of measurements, they are key parts of robust esti-
mation scheme like RANSAC [25]. Since robust schemes draw many measurement samples, the
solvers need to be fast.

State-of-the-art polynomial solver generators can create specific polynomial solvers [85, 42]
to efficiently solve a given minimal problem. Solver generators are based on methods from
algebraic geometry such as the Gröbner bases and action/multiplication matrices [19, 42], or the
method of resultants [19, 46]. The generated specific solvers, unlike general algebraic methods,
cannot solve general systems of polynomial equations. They can efficiently solve only systems
of polynomial equations of a given form, i.e. systems consisting of the same unknowns and
monomials and differing only in non-degenerate coefficients. However, these specific solvers
are usually more efficient than the general methods. For example, modern specific solvers for
camera geometry problems usually execute in mere microseconds.

In the next paragrahs an introduction to basic concepts of algebraic methods for solving sys-
tems of polynomial equations is provided. In this thesis we use the notation and basic concepts
from the algebraic geometry book of Cox et al. [19]. Consider a system of m polynomial equa-
tions,

F = {f1(x1, ..., xn) = 0, ..., fm(x1, ..., xn) = 0} (4.1)

in n unknowns X = {x1, ..., xn}. The goal is to solve this system. Let C[X] denote the set of
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all polynomials in unknowns X with coefficients in C. The ideal

I = 〈f1, . . . , fm〉 ⊂ C[X] (4.2)

is the set of all polynomial combinations of our generators f1, . . . , fm (4.1). An affine variety is
the set of all solutions to the system (4.1), i.e. the set

V (F ) = {x ∈ C|fi(x) = 0, i = 1, . . . ,m} (4.3)

Each polynomial f ∈ I vanishes on the solutions to the input system of equations (4.1). Here we
assume that the ideal I generates a zero dimensional ideal, in other words, that the system (4.1)
has a finite number of solutions.

The ideal I can be used to define the quotient ring A = C[X]/I , which is the set of equiva-
lence classes over C[X] defined by the relation a ∼ b ⇐⇒ a = b mod I ⇐⇒ a − b ∈ I .
We will denote these equivalence classes using brackets, i.e. a ∼ b ⇐⇒ [a] = [b]. If I is
a zero-dimensional ideal, equivalently, our system (4.1) has a finitely many solutions, then the
quotient ring A = C[X]/I is a finite-dimensional vector space over C.

For an ideal I there exist special sets of generators called Gröbner bases, which have the
property that the remainder after division is unique. Gröbner bases can be used to define a basis
B for the quotient ring A = C[X]/I and they can be used to solve systems of polynomial
equations (4.1).

The action matrix method [19, 5] (also called the multiplication matrix method) is a frequently
used approach for solving systems of equations with Gröbner bases. E.g., the method has been
used to generate efficient solvers for many minimal computer-vision problems [42, 44, 51, 55].
The strategy of the action-matrix method is to transform the problem of finding solutions to (4.1)
to a problem of eigendecomposition of a special multiplication matrix [17].

Let us consider the mapping Tf : A→ A of the multiplication by a polynomial f ∈ C[X] in
A = C[X]/I as

Tf ([g]) = [f ].[g] = [fg] ∈ A. (4.4)

Tf is a linear mapping for which Tf = Tg ⇐⇒ f−g ∈ I . In our caseA is a finite-dimensional
vector space over C and therefore we can represent Tf : A → A by its matrix with respect to
some linear basis B of A.

Without loss of generality, let the basis B be a monomial basis consisting of K monomials
B = ([b1], . . . , [bK ]) then Tf can be represented by K × K multiplication (action) matrix
Mf := (mij) such that

Tf ([bj ]) = [fbj ] =
K∑
i=1

mij [bi]. (4.5)

It can be easily shown [17] that λ ∈ C is an eigenvalue of the matrix Mf iff λ is a value of the
function f on the variety V (4.3). In other words, if f is e.g. xn then the eigenvalues of Mf are
the xn−coordinates of the solutions of (4.1) and the solutions to the remaining variables can be

50



4.1 The Gröbner basis Method

obtained from the eigenvectors of Mf . This means that the multiplication matrix Mf can be used
to recover the solutions by solving the eigendecomposition of Mf for which efficient algorithms
exist. Moreover, if the ideal I is a radical ideal, i.e. I =

√
I , [17], which is usually the case

of camera geometry problems, then K is equal to the number of solutions to the system (4.1).
This means that we are solving an eigenvalue problem of size that is equivalent to the number of
solutions of the considered problem. For more details and proofs we refer the reader to Cox et
al. [19]

The coefficients of the multiplication matrix Mf are polynomial combinations of coefficients
of the input polynomials (4.1). For computer vision problems these polynomial combinations
are often found “offline“ in a pre-processing step. In this pre-processing step an expanded set
of equations constructed by multiplying original equations with different monomials [42] is
generated, which is called an elimination template.

After filling the template matrix with coefficients from the input equations and performing
Gauss-Jordan (G-J) elimination or QR decomposition of this template matrix, the coefficients of
the the multiplication matrix Mf can be obtained from this eliminated template matrix.

The first automated method for generating elimination templates and Gröbner basis solvers
was presented in [44]. Larsson et al. [51] proposed and inprovement to the automatic generator
of Kukelova et al. [44]. The proposed method uses the inherent relations between the input
polynomial equations and it generates more efficient solvers than [44]. Further extensions to the
method of Larsson et al. [51] include handling saturated ideals [52] and symmetry detection in
polynomial systems [50].

Several approaches for optimizing Gröbner basis solvers with respect to numerical stability
and efficiency have been proposed recently. In [40, 44] and [68] the authors presented methods
for optimizing the size of elimination templates. Methods for improving numerical stability
based on QR and SVD decomposition of template matrices were proposed in [11]. In [43]
authors transformed elimination template matrices into a block diagonal form and in this way
they sped up several solvers. A method for extracting univariate characteristic polynomial of
the action matrix was proposed in [53]. The roots of the characteristic polynomial were found
efficiently using Sturm-sequences [34], instead of computing the full eigendecomposition of the
action matrix.

In general it is difficult to find the smallest elimination template for a given problem. In [55]
the authors proposed two methods for generating small elimination templates. The first enu-
merates and tests all Gröbner bases in an efficient way and generates solvers w.r.t. all different
Gröbner bases and standard monomial bases B of A = C[X]/I . While there are (uncountably)
infinitely many different monomial orderings for a given ideal I , there are only finitely many
different reduced Gröbner bases [67, 27]. The set of all reduced Gröbner bases of an ideal is
computed [27, 36] using the Gröbner fan of the ideal [67, 87]. The second method presented
in [55] uses a heuristic sampling scheme for generating “non-standard" monomial bases B of
A = C[X]/I , and it leads to more efficient solvers than the Gröbner fan method for many
problems. In [55] the heuristic sampling scheme was used to generate 1000 feasible candidate
“non-standard" monomial bases B. From these 1000 bases a basis that was minimizing the size
of the elimination template matrix was used to generate the final solver. In minimal solvers for
rectifying from radially-distorted scales presented in Chapter 6 we use the heuristic sampling
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scheme to optimize the numerical stability of the solvers.
The Gröbner basis method is applicable for generating solvers for systems of polynomial

equations with few unknowns. Therefore, it is important to eliminate some unknowns and sim-
plify the input equations before applying the Gröbner basis method. There are many different
ways to eliminate unknowns from the input equations. The applicability of the method depends
on the structure of input equations. Kukelova et al. [47] propose a semi-automatic method for
eliminating unknowns from input equations, which results in simplified solvers being generated.
This method is based on elimination ideal theory [19] and was applied to several minimal prob-
lems from computer vision. The main limitation of this method is that it can be applied only to
systems which contain equations that are independent on input measurements.

Another elimination approach that has been applied to several minimal problems [42, 33] in
computer vision is based on the hidden variable trick. The hidden variable trick uses hidden
variable resultants and is mostly used to eliminate all variables except one and transform the
system of polynomial equations to a univariate polynomial. In the problems presented in this
thesis we apply the hidden variable trick to eliminate a subset of unknowns. Next we describe
the main idea of the hidden variable trick.

4.2 The Hidden Variable Trick

The proposed solvers in Chapter 5 uses the hidden variable trick to transform its polynomial con-
straint equations into a tractable form. The hidden variable trick is a resultant-based technique
in algebraic geometry that is used to eliminate subsets of variables from multivariate polynomial
systems of equations [19].

Suppose that a multivariate polynomial system of m equations in n unknowns (4.1) is given.
The hidden variable trick works by assuming that a set Y = {xj}j∈I , I ⊂ {1, . . . n} of k < n
unknowns are parameters belonging in the coefficient field, i.e. assuming that input n poly-
nomials are polynomials in n − k variables. Without loss of generality let us assume that
Y = {x1, . . . , xk}. Then the input polynomials (4.1) are considered as polynomials in vari-
ables X \ Y = {xk+1, . . . , xn}, i.e.

f1, . . . , fm ∈ (C[Y ])[xk+1, . . . , xn]. (4.6)

We sometimes say that we “hide” the variables Y = {x1, . . . , xk} in the coefficient field, which
gives also the name of the method. With this assumption the system can be rewritten in the
matrix form as

M(x1, . . . , xk)y = 0, (4.7)

where M(x1, . . . , xk) is m × l matrix containing polynomials in variables Y = {x1, . . . , xk}
and y is a l × 1 vector of l monomials in the remaining n − k variables (i.e., monomials in
X \ Y = {xk+1, . . . , xn} including 1).

If a nontrivial solution to the system (4.1) exists then the matrix M(x1, . . . , xk) in (4.7) is
rank-deficient. Therefore all the l× l minors of the matrix M(x1, . . . , xk) vanish. This generates
a system of

(
m
l

)
polynomial equations in k unknowns {x1, . . . , xk}. In this way the problem is
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simplified by eliminating n− k unknowns {xk+1, . . . , xn}.
Unfortunately in this way we may introduce false solutions, i.e. the new system of

(
m
l

)
equations in k unknowns {x1, . . . , xk} may have solutions that are not solutions to the original
system (4.1). These false solutions correspond to solutions where a l − 1 × l − 1 submatrix of
M(x1, . . . , xk) with columns corresponding to monomials other than 1 is rank-deficient. Then
the full matrix M(x1, . . . , xk) has a right nullspace vector with zero coordinate where y in (4.7)
has 1. In this way, we may even introduce a one-dimensional family of false solutions. Since the
Gröbner basis method and the automatic generator [51, 44] assumes zero-dimensional ideals,
i.e. systems with a finite number of solutions, such false solutions have to be removed. This can
be done using the saturation trick presented in [52].
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5
Minimal Solvers for Rectifying

from Radially-Distorted
Conjugate Translations

This chapter introduces minimal solvers that jointly solve for affine-rectification and radial lens
undistortion from the images of translated and reflected coplanar textures (e.g., see Figures 5.1,
5.2, and 5.3). In addition, the solvers estimate the vanishing point of the translation direction
of the inputted point or region correspondences. The proposed solvers use the invariant that the
affine-rectified image of the meet of the joins of radially-distorted conjugately-translated point
correspondences is on the line at infinity. The hidden-variable trick from algebraic geometry is
used to reformulate and simplify the constraints so that the generated solvers are stable, small
and fast. Multiple solvers are proposed to accommodate various local feature types and sam-
pling strategies, and, remarkably, three of the proposed solvers can recover rectification and lens
undistortion from only one radially-distorted conjugately-translated affine-covariant region cor-
respondence. Synthetic and real-image experiments confirm that the proposed solvers demon-
strate superior robustness to noise compared to the state of the art. Accurate rectifications on
imagery taken with narrow to fisheye field-of-view lenses demonstrate the wide applicability of
the proposed method. The method is fully automatic.

5.1 Introduction

Each of the proposed minimal solvers exploits the following properties of radially-distorted
conjugate translations: (i) The affine-rectified image of the meet of the joins of conjugately–
translated point correspondences is on the line at infinity (see Section 5.2), and (ii) a conjugate
translation is a homography with only four degrees of freedom (see Section 5.3).

The proposed minimal solvers are differentiated by the choice to eliminate either the unknown
vanishing point or vanishing line from the polynomial systems that arise from constraints in-
duced by radially-distorted conjugately translated local features. The group of Eliminated Van-
ishing Point (EVP) solvers provide flexible sampling in a RANSAC-based estimator: they can
jointly recover undistortion and rectification from radially-distorted conjugate translations in
one or two directions, where some of the point correspondences can translate with arbitrary dis-
tance. In addition, there is an EVP variant that admits reflections. The one-direction variants
require one affine-covariant region correspondences, while the two-direction variants require
two similarity-covariant region correspondences.

The Eliminated Vanishing Line (EVL) solver jointly recovers undistortion and rectification
from one radially-distorted conjugately-translated affine-covariant region correspondence. The
geometry of this configuration enables the elimination of the vanishing line, which results in a
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5.1 Introduction

GoPro Hero 4 Wide, 17.2mm

Figure 5.1: Inputs and Outputs. Input (top left) is a distorted view of a scene plane with transla-
tional symmetries and reflections, and the outputs (top right, bottom) are the radially
undistorted image and the rectified scene plane. The method is fully automatic.

solver that is very stable, fast and robust to feature noise.

Covariant region detections reduce the number of required correspondences to as few as one
for the proposed solvers, but corners or combinations of corners and covariant regions can also
be used as input. Since the proposed solvers are derived from constraints induced by point
correspondences, points are extracted from the region correspondences as input to the proposed
solvers.

With one or two-correspondence region sampling, an accurate undistortion and rectification
is quickly recovered, even for difficult scenes (see Figure 5.7). The proposed solvers are ideally
suited for RANSAC, where the minimal sample size reduces the required trials, the fast time to
solution ensures fast trials, and the noise robustness ensures an accurate rectification is recovered
when inlying correspondences are sampled [24].

Examples of both frame constructions are shown in Figures 5.2, 5.5, and 5.6.
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5 Minimal Solvers for Rectifying from Radially-Distorted Conjugate Translations

Figure 5.2: Direct Affine Rectification. The hierarchy of rectifications from distorted to metric
space is ascended from the left. Color denotes the transformation: blue is conju-
gate translation and red is imaged reflection. Marker type denotes the correspon-
dence configurations that the proposed solvers admit: circles for three conjugately-
translated point correspondences and filled circles for two pairs of two point corre-
spondences, where one pair is consistent with a radially-distorted conjugate transla-
tion and the other pair is consistent with either a distorted conjugate translation or
distorted reflection (shown here as ã). The scene plane’s vanishing line is shown in
the original and undistorted image (̃l and l, respectively), as well as the reflection
axis of the red features (ã, a, respectively, where a is the rectified reflection axis).
Point correspondences (circles) are extracted from scale or affine-covariant region
correspondences (solid polylines), which can reduce the number of required corre-
spondences to one. The state-of-the art requires sampled undistortions, scene lines
[3, 94], or three affine-covariant region correspondences (see Chapter 6). Affine-
rectified images are metrically upgraded with the method of [74] for presentation
(see Section 5.6.4).

5.1.1 Previous Work

Chapter 6 introduces minimal solvers that can rectify from the image of rigidly-transformed
coplanar repeats, but these solvers are over 2000 times slower than the fastest of the proposed
solvers (see Table 5.3) in this chapter and require three affine-covariant region correspondences
for the most commonly used configuration. In contrast, the proposed solvers include three vari-
ants requiring only one region correspondence, which, in addition to the very fast time to solution
of the proposed solvers, results in a massive speedups of the RANSAC-based estimator used in
this chapter (from [74]) compared to the solvers in Chapter 6 (see Table 5.1). Furthermore, the
solvers in Chapter 6 admit only region correspondences since those solvers place constraints on
the rectified scales of corresponded coplanar regions, whereas the proposed solvers also admit
radially-distorted conjugately-translated point correspondences.

An exhaustive list of minimal solvers that are capable of jointly estimating lens undistortion
and affine-rectification with local feature extracted from radially-distorted conjugately-translated
textures is included in the survey of solvers listed in Table 5.2.
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5.2 Meets of Joins

Wildenauer et al. [94] Antunes et al. [3] Chapter 6 Proposed

Feature Type fitted circles fitted circles covariant regions points, covariant regions
Number set of 2 and 3 lines set of 3 and 4 lines 3 region correspondences 1 region correspondence

Assumption parallelism parallelism rigidly transformed translated, reflected
Rectification multi-model multi-model direct direct

Table 5.1: Scene Assumptions. Rectifying solvers from [94, 3] require distinct sets of parallel
scene lines as input and multi-model estimation. Solvers in Chapter 6 admit region
correspondences extracted from rigidly-transformed coplanar repeated scene texture,
but require 3 correspondences for the most common solver variant and cannot admit
points correspondences. The proposed solvers rectify from just 1 radially-distorted
conjugately-translated region correspondence and also admit point correspondences
(see Figures 5.2 and 5.5).

5.1.2 Solving Systems of Polynomial Equations

The polynomial systems of equations encoding the rectifying constraints for the Eliminated
Vanishing Point Solvers (EVP) are solved using an algebraic method based on Gröbner bases.
Automated solver generators using the Gröbner basis method [44, 48] have been used to gen-
erate solvers for several camera geometry estimation problems [44, 45, 48, 49], see also Chap-
ter 6. However, the straightforward application of automated solver generators to the proposed
constraints resulted in unstable solvers (see Section 5.7 and Figure 5.8a). Larsson et al. [49] in-
troduced a method called ideal saturation for generating polynomial solvers for problems where
unwanted solutions arise because of simplifications during modeling. The hidden variable trick
with ideal saturation is used to eliminate unknowns from the polynomial system of equations
arising in the formulations of the Eliminated Vanishing Point solvers (see Section 5.4.1), which
results in significantly more numerically stable solvers (see Figure 5.8a) than solvers generated
from the original constraint equations.

5.2 Meets of Joins

Let mi be the join of the conjugately translated point correspondence xi ↔ x′i . Then mi can
be expressed in terms of the camera matrix P, joined scene point correspondences Xi ↔ X′i ,
and scene translation direction U as

αmi = α
(
xi × x′i

)
= (PXi × PX′i)/|P| = (PXi × P(Xi + U))/|P| = P−>(Xi + U), (5.1)

where α 6= 0 and |P| = det P.

Using (5.1) to express the meet of joins mi and mj in terms of the camera P and joined scene
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(a) GoPro Hero 4 Medium, 21.9mm (b) GoPro Hero 4 Wide, 17.2mm (c) 7.5mm

Figure 5.3: Field-of-View Study. The proposed solvers give accurate undistortions and rectifi-
cations across all fields-of-view. The distorted image of the vanishing line is ren-
dered in green. Left-to-right with increasing levels of distortion: (a) GoPro Hero
4 at the medium-FOV setting, (b) GoPro Hero 4 at the wide-FOV setting, (c) and
a Samyang 7.5mm fisheye lens. The outputs are the undistorted (middle row) and
rectified images (bottom row). Note the stability of the undistortion estimates for the
GoPro images. The rotunda image is rectified from features extracted mostly from
the wrought iron fence below the rotunda. Focal lengths are 35mm equivalents.

point correspondences Xi ↔ X′i and Xj ↔ X′j gives

αimi × αjmj =
(
P−>(Xi + U)

)
×
(
P−>(Xj + U)

)
=

P((Xi + U)× (Xj + U))/|P| = P
(
U>(Xi ×Xj)

)
U/|P| = βPU = ηu,

(5.2)

where β = U>(Xi ×Xj)/|P|, η is non-zero and U>(Xi ×Xj) is non-zero for non-degenerate
point configurations (see Figure 2.3). In general (5.2) shows that the image of all joined scene
point correspondences translating in the same direction meet at the vanishing point of their
translation direction, i.e. ηu = βPU. Note that if correspondence xk ↔ x′k from Figure 2.3
were used in lieu of xj ↔ x′j in (5.2), then U>(Xi ×Xk) = 0, which implies that η = 0. This
is a degenerate configuration of the solvers and is discussed in detail in Section 5.5.

Since U is coincident with l∞ by construction (see Figure 2.3) and point-line incidence is
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5.3 Radially-Distorted Conjugate Translations

# Correspondences
Reference Rectifies Undistorts Motion Regions Points # Solutions Size

H2l [82] X translation 1 2 1 closed form

H2lλ X X translation 1 3 4 closed form

H2luλ X X translation 1 3 4 14× 18

H2lusuλ
X X translation 1 3 2 24× 26

H22luvλ
X X translation 2 4 6 54× 60

H22luvsvλ
X X translation 2 4 4 76× 80

H22λ [26] X rigid1 2 5 18 18× 18

H22λ1λ2
[45] X rigid1 2 5 5 16× 21

HDES
222 lλ Chapter 6 X X rigid 3 9 54 133× 187

1 The preimages of both region correspondences must be related by the same rigid transform in the scene plane.

Table 5.2: Proposed Solvers (shaded in grey) vs. State of the Art. The proposed solvers require
a few as 1 region correspondence instead of three and are significantly simpler than
the undistorting and rectifying solver HDES

222 lλ of Chapter 6. The homography solvers
of [26, 45] do not directly recover the vanishing line and require two affine-covariant
region correspondences or five points, all of which have the same relative orientation,
which restricts sampling.

invariant under projection by P [32], u and l are also coincident,

l>u = 0. (5.3)

The EVL solver introduced in 5.4.2 uses the relation between conjugately-translated points
and vanishing points derived in (5.1) and (5.2) and the vanishing point-vanishing line incidence
equation of (5.3) to place constraints on l.

5.3 Radially-Distorted Conjugate Translations

Conjugate translations as defined in (2.23) can be written in terms of radially-distorted conjugately-
translated point correspondences undistorted by (2.35) as

αf(x̃′, λ) = Huf(x̃, λ) = [I3 + suul>]f(x̃, λ), (5.4)

where x̃ ↔ x̃′ is a radially-distorted point correspondence that is consistent with the conjugate
translation Hu. We call x̃ ↔ x̃′ a radially-distorted conjugately-translated point correspon-
dence going forward.

Each of the EVP solvers introduced in Section 5.4.1 uses the relation defined in (5.4) and the
vanishing point-vanishing line incidence equation of (5.3) to place constraints on l and λ.
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Figure 5.4: The Geometry of a Radially-Distorted Conjugate Translation. A translation of
coplanar scene points {Xi,Xj ,Xk } by U induces a conjugate translation Hu in
the undistorted image as viewed by camera P, as shown in Figure 2.3. Joined
conjugately-translated point correspondences xi ↔ x′i , xj ↔ x′j and xk ↔ x′k
must meet at the vanishing point u. Vanishing line l is the set of all vanishing
points of translation directions. The division model images lines as circles, thus
the distorted vanishing point ũ is given by the intersection of three circles, two of
which are coincident with the radially-distorted conjugately-translated point corre-
spondences x̃i ↔ x̃′i ,x̃j ↔ x̃′j and x̃k ↔ x̃′k , and the third is given by the dis-
torted vanishing line l̃. Radially-distorted conjugately-translated points are related
by fd(Huf(x̃, λ), λ), where fd(·, λ) is the division-model distortion function.

5.4 Solvers

This chapter proposes five different minimal solvers for different geometric configurations of
radially-distorted conjugate translations, which are distinguished by the number of directions
and magnitudes of translations that the proposed solver variants admit. These variants are mo-
tivated by the types of covariant feature detectors used to extract point correspondences, which
give the constraints needed to jointly solve for the division model parameter, vanishing line and
the vanishing point of the translation direction(s) [60, 62, 65, 66, 91].

The proposed solvers can be differentiated by the choice to use the hidden variable trick
(see Section 4.2 and [18]) to either eliminate the unknown parameters of the vanishing point
of the imaged translation direction or the imaged scene plane’s vanishing line from the solver’s
polynomial system of equations. The solvers are eponymously named after their eliminated
unknowns: (i) the eliminated vanishing point (EVP) solvers (see Section 5.4.1) hide the lens
undistortion parameter and vanishing line parameters and have the vanishing point eliminated,
and (ii) the eliminated vanishing line (EVL) solver (see Section 5.4.2) hides the lens undistortion
parameter and eliminates the vanishing line parameters (the vanishing points are recovered by
construction). It is interesting to compare the significant differences in solver complexity, time
to solution (see Table 5.3), stability (see Figure 5.8) and noise sensitivity (see 5.9) that differs
by the elimination choice. Sections 5.4.1 and 5.4.2 detail how either the vanishing point of the
translation direction or the vanishing line is eliminated to simplify the systems of polynomial
equations that arise from constraints induced by radially-distorted conjugately-translated local
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features.
The EVP solvers introduced in Section 5.4.2 are grouped by whether they admit one or two di-

rections of radially-distorted conjugate translations. The EVL solver introduced in Section 5.4.2
is a one-direction variant. While it doesn’t admit all the various configurations of the EVP
solvers, it is the fastest and most robust of the proposed solvers.

5.4.1 The Eliminated Vanishing Point (EVP) Solvers

The model for radially-distorted conjugate translations in (5.4) defines the unknown geometric
quantities: (i) division-model parameter λ, (ii) imaged scene-plane vanishing line l =

(
l1, l2, l3

)>,

(iii) vanishing point of the translation direction u =
(
u1, u2, u3

)> (see Section 5.4.1 for the
two-direction extensions), (iv) scale of translation su for correspondence x̃ ↔ x̃′ , (v) and the
homogeneous scale parameter α.

The solution for the vanishing line l is constrained to the affine subspace l3 = 1 of the real-
projective plane, which makes it unique. This inhomogeneous choice of l is unable to represent
the pencil of lines that pass through the image origin; however, the degeneracy remains even
with a homogeneous representation of l. See Section 5.5 for a more detailed discussion of the
degeneracies.

The vanishing direction u must meet the vanishing line l, which defines a subspace of solu-
tions for u. The magnitude of u is set to the magnitude of conjugate translation su1 of the first
correspondence x̃1 ↔ x̃′1 , which defines a unique solution

l>u = l1u1 + l2u2 + u3 = 0 ∧ ‖u‖ = su1 . (5.5)

The relative scale of translation s̄ui for each correspondence x̃i ↔ x̃′i with respect to the mag-
nitude of ‖u‖ is defined so that s̄ui = sui /‖u‖. Note that s̄u1 = 1. The relationship between
magnitude of translation in the scene plane and the magnitude of conjugate translation is derived
in the Appendix in the supplemental materials.

Two one-direction solvers are proposed, which require 3 radially-distorted conjugately-trans-
lated point correspondences. A radially-distorted conjugately-translated affine-covariant region
correspondence provides the necessary 3 point correspondences (see Section 3.2.3). Solver
H2luλ assumes that all point correspondences have the same relative scales of translation, i.e.
s̄u1 = s̄u2 = s̄u3 = 1. Solver H2lusuλ relaxes the equal translation scale assumption of the
H2luλ solver. In particular, solver H2lusuλ assumes that two of the point correspondences have
the same magnitude of conjugate translation (i.e. s̄u1 = s̄u2 = 1), and the third point correspon-
dence has an unknown relative scale of the translation s̄u3 . The H2lusuλ admits combinations of
similarity-covariant regions (defining 2 point correspondences) and corner detections for flexible
sampling of complementary features.

In addition, two two-direction solvers are proposed that require 4 coplanar point correspon-
dences, 2 of which have the vanishing point of translation direction u and the remaining 2 a
different vanishing point v. Two similarity-covariant region correspondences consistent with
two radially-distorted conjugate translations provide 2 pairs of 2 point correspondences (see
Section 3.2.3) provide the necessary 4 point correspondences.
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5 Minimal Solvers for Rectifying from Radially-Distorted Conjugate Translations

Figure 5.5: Input Configurations for the EVP Solvers. Each of the one-direction solvers—
H2luλ and H2lusuλ—requires 3 points, which can be obtained from only 1
affine-covariant region correspondence. The H2lusuλ admits a point correspon-
dence with a unique magnitude of conjugate translation, which provides flexibil-
ity when sampling complementary feature correspondences. The two-direction
solvers—H22luvλ,H22luvsvλ–require 4 points, which can be obtained from 2
similarity-covariant feature correspondences. Solver H22luvsvλ admits reflections
of similarity-covariant features since sv allows a point correspondence to move
along the line of the imaged translation going through the vanishing point.

Solver H22luvλ requires four points and assumes equal relative scales of conjugate translation
in both directions, namely s̄u1 = s̄u2 = 1 with respect to ‖u‖ = su1 and s̄v3 = s̄v4 = 1 with respect
to ‖v‖ = sv3 .

Solver H22luvsvλ requires four point correspondences (equivalently, two similarity covariant
region correspondences—see Section 3.2.3) and relaxes the assumption of the H22luvλ solver
that both point correspondences in the v direction have the same magnitudes of conjugate trans-
lation. In particular, H22luvsvλ assumes that the first two point correspondences translate in the
direction u with the same relative scale of translation, i.e., s̄u1 = s̄u2 = 1. The remaining two
point correspondences translate in the direction v with arbitrary translation magnitudes, i.e., the
relative scales of translations of these two correspondences with respect to ‖v‖ = sv3 are s̄v3 = 1
and an unknown relative scale s̄v4 . In the case that similarity-covariant regions are extracted
from the image and its reflection, reflected covariant regions can be used for jointly solving for
undistortion and rectification (see Figure 5.5).

In all of the proposed solvers the scalar values αi are eliminated from (5.4). This is done by
multiplying (5.4) by the skew-symmetric matrix [f(x̃′, λ)]×. The fact that the join of a point x
with itself [x]×x is 0 gives, 0 −w̃′i ỹ′i

w̃′i 0 −x̃′i
−ỹ′i x̃′i 0

×
1 + s̄ui u1l1 s̄ui u1l2 s̄ui u1

s̄ui u2l1 1 + s̄ui u2l2 s̄ui u2

s̄ui u3l1 s̄ui u3l2 1 + s̄ui u3

x̃iỹi
w̃i

 = 0, (5.6)

where w̃i = 1+λ(x̃2
i +ỹ2

i ) and w̃′i = 1+λ(x̃′2i +ỹ′2i ). The matrix equation in (5.6) contains three
polynomial equations from which only two are linearly independent since the skew-symmetric
matrix [f(x̃′, λ)]× is rank two.

To solve the systems of polynomial equations resulting from the presented problems, we use
the Gröbner basis method [18]. In particular, we used the automatic generators proposed in [44,
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48]; however, for our problems the coefficients of the input equations are not fully independent.
This means that using the default settings for the automatic generator [44, 48], which initialize
the coefficients of equations by random values from Zp, does not lead to correct solvers. Correct
problems instances with values from Zp are needed to initialize the automatic generator to obtain
working Gröbner basis solvers.

The straightforward application of the automatic generator [44, 48] to the needed constraints
with correct coefficients from Zp resulted in large templates and unstable solvers, especially
for the two-direction problems. The Gröbner basis solvers generated for the original con-
straints have template matrices with sizes 80 × 84, 74 × 76, 348 × 354, and 730 × 734 for
the H2luλ, H2lusuλ, H22luvλ and H22luvsvλ problems, respectively. Therefore, we use the
hidden-variable trick (see Section 4.2 and [18]) to eliminate the vanishing translation directions
together with ideal saturation [49] to eliminate parasitic solutions. The reformulated constraints
are simpler systems in only 3 or 4 unknowns, and the solvers generated by the Gröbner basis
method are smaller and more stable. The reduced elimination template sizes for the simpli-
fied solvers are summarized in Table 5.2, and wall clock timings for the simplified solvers are
reported in Section 5.7.2. Optimized C++ implementations for all the proposed solvers are pro-
vided.

Next, we describe the solvers based on the hidden-variable trick in more detail.

One-Direction EVP Solvers

For the one-direction H2lusuλ solver we have s̄u1 = s̄u2 = 1. Therefore the constraints (5.6)
result in two pairs of linearly independent equations without the scale parameter s̄ui for i = 1, 2,
and two linearly independent equations with an unknown relative scale s̄u3 for the third point
correspondence, i.e., i = 3. Additionally, we have the orthogonality constraint in (5.5). All
together we have seven equations in seven unknowns (l1, l2, u1, u2, u3, s̄

u
3 , λ).

Note, that these equations are linear with respect to the vanishing translation direction u.
Therefore, we can rewrite the seven equations as

M(l1, l2, s̄
u
3 , λ)


u1

u2

u3

1

 = 0, (5.7)

where M(l1, l2, s̄
u
3 , λ) is a 7× 4 matrix whose elements are polynomials in (l1, l2, s̄

u
3 , λ).

Since M(l1, l2, s̄
u
3 , λ) has a null vector, it must be rank deficient. Therefore, all the 4 × 4

cofactors of M(l1, l2, s̄
u
3 , λ) must equal zero. This results in

(
7
4

)
= 35 polynomial equations

which only involve four unknowns.
Unfortunately, the formulation (5.7) introduces a one-dimensional family of false solutions.

These are not present in the original system and corresponds to solutions where the first three
columns of M become rank deficient. In this case there exist null vectors to M such that the last
element of the vector is zero, i.e., not on the same form as in (5.7).

These false solutions can be removed by saturating [49] any of the 3 × 3 cofactors from the
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first three columns of M. The matrix M has the following form,

M(l1, l2, s̄
u
3 , λ) =



m11 m12 0 m14

m21 m22 0 m24

m31 0 m33 m34

m41 0 m43 m44

m51 m52 0 m54

m61 0 m63 m64

l1 l2 1 0


, (5.8)

where mij are polynomials in l1, l2, s̄u3 and λ. We choose to saturate the 3 × 3 cofactor corre-
sponding to the first, second and last row since it reduces to only the top-left 2× 2 cofactor, i.e.,
m11m22 − m12m21, which is only a quadratic polynomial in the unknowns. The other 3 × 3
determinants are more complicated and leads to larger polynomial solvers. Using the saturation
technique from Larsson et al. [49], we were able to create a polynomial solver for this saturated
ideal. The size of the elimination template is 24×26. Note that without using the hidden-variable
trick the elimination template was 74× 76. The number of solutions is two.

For the H2luλ solver we can use the same hidden-variable trick. In this case s̄u1 = s̄u2 =
s̄u3 = 1; therefore, the matrix M in (5.7) contains only three unknowns l1, l2 and λ. This problem
is over-constrained, and one of the two constraints from a point correspondence goes unused.
Thus, for this problem we can drop one of the equations from (5.6), e.g., for i = 3, and the
matrix M in (5.7) has size 6 × 4. In this case all 4 × 4 cofactors of M result in 15 equations
in 3 unknowns. Similar to the 3 point case, this introduces a one-dimensional family of false
solutions. The matrix M has a similar structure as in (5.8) and again it is sufficient to saturate the
top-left 2 × 2 cofactor. For this formulation we were able to create a solver with template size
14× 18 (compared with 80× 84 without using hidden-variable trick). The number of solutions
is four.

Two-Direction EVP Solvers

In the case of the two-direction H22luvsvλ solver, the input equations for two vanishing trans-
lation directions u =

(
u1, u2, u3

)> and v =
(
v1, v2, v3

)> can be separated into two sets of
equations, i.e., the equations containing u and the equations containing v. Note that in this case
we have two equations of the form (5.5), i.e., the equation for the direction u and the equation
for the direction v and we have an unknown relative scale s̄v4 . Therefore, the final system of 10
equations in 10 unknowns can be rewritten using two matrix equations as

M1(l1, l2, λ)


u1

u2

u3

1

 = 0, M2(l1, l2, s̄
v
4 , λ)


v1

v2

v3

1

 = 0, (5.9)

where M1 and M2 are 5 × 4 matrices such that the elements are polynomials in (l1, l2, λ) and
(l1, l2, s̄

v
4 , λ), respectively.

Again all 4×4 cofactors of M1 and M2 must concurrently equal zero. This results in 5+5 = 10
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polynomial equations in four unknowns (l1, l2, s̄
v
4 , λ). In this case, only 39 additional false

solutions arise from the hidden-variable trick. The matrices M1 and M2 have a similar structure
as in (5.8) and again it is sufficient to saturate the top-left 2 × 2 cofactors to remove the extra
solutions. By saturating these determinants we were able to create a solver with template size
76× 80 (previously 730× 734). The number of solutions is four.

Finally, for the H22luvλ two-direction solver, s̄u1 = s̄u2 = 1 and s̄v3 = s̄v4 = 1. This problem
is over-constrained, so we can drop one of the equations from constraint (5.6), e.g., for i = 4.
Therefore, the matrix M2 from (5.9) has size 4×4, and it contains only three unknowns (l1, l2, λ).
All 4 × 4 cofactors of M1 and M2 result in 5 + 1 = 6 polynomial equations in three unknowns
(l1, l2, λ).

For this case we get 18 additional false solutions. Investigations in Macaulay2 [29] revealed
that for this particular formulation, it is sufficient to only saturate the top-left 2 × 2 cofactor of
M1 and the top-left element of M2. Generating the polynomial solver with saturation resulted in a
template size of 54× 60 (previously 348× 354). The number of solutions is six.

5.4.2 The Eliminated Vanishing Line (EVL) Solver

Suppose { x̃i ↔ x̃′i }3i=1 are point correspondences extracted from a radially-distorted conjugately-
translated affine-covariant region correspondence as shown in Figure 5.6. Then their preimages
{Xi ↔ X′i }3i=1 on the scene plane Π are in correspondence with a translation, denote it U,
which is color coded cyan in Figure 5.6. This point configuration has three additional transla-
tion directions V1,V2 and V3, (colored red, green and blue, respectively), where each of the
four imaged translation directions induces four radially-distorted conjugate translations in the
distorted image.

A vanishing point, i.e., u, v1, v2, v3, can be recovered from each meet of joins (see Sec-
tion 5.2) of pairs of conjugate translations that share the same translation direction in the scene
plane, e.g.,

γv1 = (x1 × x3)× (x′1 × x′3). (5.10)

There are six such pairs to choose from, one for each of v1,v2 and v3 and three for u, which is
the vanishing point of the translation direction for the undistorted point correspondences {xi ↔
x′i }3i=1.

As proved in Section 5.2, each meet of joins puts a constraint on the vanishing line l. It will
be shown that only three of the six vanishing point constructions are necessary to solve for the
undistortion parameter λ and vanishing line l. It will also be shown that exactly one of any of
the three meets of joins of conjugate translations from {xi ↔ x′i }3i=1 can be used to constrain l
(see Section 5.4.2).

Without loss of generality, we use the joins of pairs of conjugate translations meeting at v1,v2,
and v3, which are substituted into the vanishing point-vanishing line incident constraint of (5.3)

v>i l =
(
(xi × xj)× (x′i × x′j)

)>
l = 0, (5.11)

where i < j and i, j ∈ { 1 . . . 3 }. The homogeneity of (5.11) is used to eliminate any non-zero
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Figure 5.6: The Geometry of the EVL Constraints. The scene plane Π contains the preimage
of radially-distorted conjugately-translated affine-covariant regions, equivalently, 3
translated points in the direction U. This configuration had 3 additional translation
directions V1,V2,V3 that can be used to design a solver. In the image plane π,
the joins of each of the images of the 3 pairs of parallel lines (colored red, green
and blue) meet at the imaged scene plane’s vanishing line l. Each incidence of a
vanishing point u,v1,v2 and v3 with l generates a scalar constraint equation. Two
equations are needed to estimate l and three are necessary to jointly estimate l and
λ. Note that u can be estimated from one of 3 meets of distinct joins of undistorted
point correspondences, but only 1 such meet can be used as a Constraint to estimate
the rectification (see Section 5.4.2 for details).

scalars. Substituting radially-distorted points for undistorted points in (5.11) using (2.35) gives

(f(x̃i, λ)× f(x̃j , λ))×
(
f(x̃′i, λ)× f(x̃′j , λ)

)>
l = 0. (5.12)

The skew-symmetric operator, denoted [·]×, is used to transform (5.12) into the homogeneous
matrix-vector equation([

[f(x̃i, λ)]× f(x̃j , λ)
]
×
[
f(x̃′i, λ)

]
× f(x̃′j , λ)

)>
l = 0, (5.13)

where where i < j and i, j ∈ { 1 . . . 3 }. Independent scalar constraint equations of the form
(5.13) can be stacked to add the necessary number of constraints for jointly estimating l and λ.

Creating the Solver

Each vanishing point u,v1,v2 and v3 generates one scalar constraint on the vanishing line l.
There are four unknowns in constraint (5.13), namely l =

(
l1, l2, l3

)> and the division model
parameter λ (see Section 2.11). The vanishing line l is homogeneous, so it has only two degrees
of freedom. Thus 3 scalar constraint equations of the form (5.13) generated by 3 vanishing
points from the set {u,v1,v2,v3 } are needed, which, as shown in (5.13), can be concisely
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(a) Nikon D300, 16mm (b) Nikon D300, 15mm (c) unknown (d) Olympus M1, 15mm (e) Nikon D810, 14mm

Figure 5.7: EVL Solver Results on Fisheye Images. The distorted image of the vanishing line
is rendered in green in the input images on the top row. Results were produced
using the H2lλ with 1-correspondence sampling in a RANSAC framework. The H2lλ
solver runs in 0.5 µs. Surprisingly, reasonable rectifications are possible using the 1-
parameter division model for the extreme distortions of fisheye lenses. Focal lengths
are reported as 35mm equivalent.

encoded in the matrix M(λ) ∈ R3×3 as

M(λ)

l1l2
l3

 = 0. (5.14)

Note that only 1 of the 3 meets of joins of conjugately-translated point correspondences from
{xi ↔ x′i }3i=1 can be used since there is no constraint included that enforces

((xi × x′i)× (xj × x′j))× ((xi × x′i)× (xk × x′k)) = 0,

where i, j, k ∈ { 1 . . . 3 } and i 6= j. Therefore, at least two of v1,v2, and v3 must be used, and
the two chosen meets can be combined with exactly one of the meets the can be constructed from
{xi ↔ x′i }3i=1. Including the case where each of v1,v2, and v3 is used gives 3

(
3
2

)
+ 1 = 10

possible combinations of meets. Selecting the optimal meets for the most accurate rectification
is addressed in Section 5.4.2.

The division model parameter λ is hidden in (5.14) using the hidden-variable trick (see Sec-
tion 4.2 and [18]) in the entries of coefficient matrix M, which are polynomials only in λ. Thus l
has been eliminated, which motivates the EVL name.

Matrix M(λ) is rank deficient since it has a null vector, which implies that det M(λ) = 0.
The determinant constraint defines a univariate quartic with unknown λ, which can be solved in
closed form. After λ has been recovered, the vanishing line l is obtained by solving for the null
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space of M. The EVL solver is denoted H2lλ.

Best Minimal Solution Selection

The EVL geometry of Figure 5.6 has 10 meets that can be used to generate scalar constraint
equations in (5.13). However, only 3 meets are needed to jointly estimate l and λ. Since the
time to solution for the H2lλ is only 0.5 µs, the solutions for all minimal subsets of meets can
be verified against the unused constraints, e.g., if the meets of joins of the radially-distorted
conjugately-translated correspondences associated with v1,v2, and v3 are used, then the corre-
spondences associated with u (cyan direction) can be used for verification. The minimal subset
of meets is chosen that minimizes the sum of symmetric transfer errors∑

i

d(x̃i, f
d(H−1f(x̃′i, λ), λ))2 + d(fd(Hf(x̃i, λ), λ), x̃′i)

2, (5.15)

where x̃ ↔ x̃′ are radially-distorted conjugately-translated point correspondences that are not
included in a minimal configuration for estimating rectification. We call this approach best
minimal solution selection.

Evaluating the quality of the minimal solution on (5.15) has several benefits: 1. Near degener-
ate correspondence configurations can be rejected (see Section 5.5.1), 2. Correspondences with
geometric properties that are more robust to noise will be preferred, e.g., regions that are further
apart, 3. and expensive RANSAC consensus set construction can be preempted, if there is no
minimal solution that has sufficiently small symmetric transfer error as defined in (5.15).

Best minimal solution selection is evaluated in the sensitivity studies in Section 5.7. The
solver incorporating best minimal solution selection is denoted in the standard way, H2lλ. For
comparison we introduce a baseline solver, denoted HRND

2 lλ, which randomly selects from the
10 possible constraint configurations associated with the EVL geometry (see Figure 5.6). As
expected, the H2lλ performs better than HRND

2 lλ on all sensitivity measures. See Section 5.7.1
for the details.

Optimal Estimate of the Vanishing Point

Unlike the EVP solvers in Section 5.4.1, which jointly estimate the vanishing point u (shown in
Figure 5.6) using all constraints from the set of conjugate translations {xi ↔ x′i }3i=1 (see (5.6)),
the H2lλ solver maximally uses two joins from {xi ↔ x′i }3i=1 and possibly none if only the red,
green and blue translation directions in Figure 5.6 are selected as the best minimal solution.

The vanishing point u of the cyan translation direction can be recovered after the vanishing
line l and division model parameter λ are estimated (e.g., by H2lλ) by solving a constrained
least squares system that includes all constraints induced by {xi ↔ x′i }3i=1 (see Figure 5.6).
The incidence of u with l is explicitly enforced by including (5.3) into the constraints. Define
h1>
u ,h2>

u , and h3>
u to be the rows of a conjugate translation,

αx′ = Hux =
[
h1
u h2

u h3
u

]>
x =

[
I3 + ul>

]
x. (5.16)
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The homogeneous scale in (5.16) can be eliminated by substituting h3>
u x for α, and the system

can be rearranged such that

x>h1
u = (x′x>)h3

u

x>h2
u = (y′x>)h3

u .
(5.17)

Collecting the terms of vanishing point after expanding the dot products in (5.17) for each
pair of {xi ↔ x′i }3i=1 along with an incidence constraint l>u = 0 gives the constrained least
squares problem

minimize
u

‖Mu − y‖2

subject to l>u = 0,

where M =


...

−l>xi 0 x′(lTxi)
0 l>xi y′(l>xi)

...

 , y =


...

xi − x′
yi − y′

...


Since the matrix

[
M> l

]> has linearly independent columns, and l> is trivially row indepen-
dent, u is recovered by solving [

M>M l
l> 0

](
u
z

)
=

(
M>y

0

)
, (5.18)

where z is a nuisance variable [8]. Surprisingly, a superior estimation of the vanishing point u
is given by using (5.18) after rectifying with the EVL H2lλ solver than by jointly solving for
the rectification, vanishing point, and division model parameter as done with the EVP group of
solvers (see the transfer error sensitivity study Figure 5.9a).

5.5 Degeneracies

We identified three important degeneracies for the solvers: Section 5.5.1 describes two geomet-
ric configurations of features such that there exists either a subspace of rectifications or no valid
solution, and Section 5.5.2 details the modeling degeneracy introduced from using the represen-
tation of (2.10) for the affine-rectifying homography, which requires l =

(
l1, l2, l3

)> such that
l3 6= 0 [32]. The proposed solvers and the state-of-the-art solvers of Chapter 6 all suffer from
this modeling degeneracy. It is shown that addressing this degeneracy requires increasing the
complexity of the solvers. There are likely additional degeneracies between the EVL and EVP
solver, but an exhaustive analysis is a difficult theoretical problem.
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5.5.1 Degenerate Feature Configurations

Suppose that: (i) H is a rectifying homography other than the identity matrix, (ii) that the image
has no radial distortion, (iii) and that all corresponding points from repeated affine-covariant
regions fall on a single circle centered at the image center. Applying the division model (see
Section 2.11) uniformly scales the points about the image center. Given λ 6= 0, for a trans-
formation by f(·, λ) defined in (2.35) of the points lying on the circle there is a scaling matrix
S(λ) = diag(1/λ, 1/λ, 1) that maps the points back to their original positions. Thus there is a
1D family of rectifying homographies given by HS(λ) for the corresponding set of undistorted
images given by f(·, λ).

Secondly, suppose that the conjugately-translated point correspondences xi ↔ x′i and xk ↔
x′k are collinear as shown in Figure 2.3. Let mi = xi × x′i and mk = xk × x′k. Then
mi × mk = 0, which is not a point in the real-projective plane RP2, and cannot be used
to place a constraint on l. Unfortunately, this point configuration is common, e.g., consider a
row of windows on a facade. It is possible that the feature extraction pipeline will establish
collinear correspondences. However, affine frames constructed from covariant region detections
are typically not in this degenerate configuration since the origin is defined by blob’s center of
mass or peak response in scale space and one of the extents is constructed as a right angle to the
first linear basis vector (see Figure 3.11). Regardless, the degeneracy can be avoided by using
different meets.

5.5.2 The Pencil of Vanishing Lines Through the Distortion Center

If the vanishing line passes through the image origin, i.e. l =
(
l1, l2, 0

)>, then the radial term in
the homogeneous coordinate of (2.36) is canceled. In this case, it is not possible to recover the
division model parameter λ from the systems of equations (5.8), (5.9) or (5.14) solved by any
of the proposed solvers. However, the degeneracy does not arise from the problem formulation.
An affine transform can be applied to the undistorted image such that the vanishing line l in the
affine-transformed space has l3 6= 0.

The division model requires the image origin to be the distortion center [26]. The derivations
in this chapter assume that image center, distortion center and image origin are coincident (see
Section 2.11). The proposed solvers and the state-of-the-art solvers of Chapter 6 formulate joint
undistortion and rectification in terms of (2.36), which leaves the distortion center stationary.

Directional cameras see only points in front of the camera [30], so the vanishing line cannot
intersect the convex hull of measurements. Therefore, changing basis in the undistorted space
such that any point in the convex hull of the undistorted feature points (i.e., affine covariant
region detections) is the image origin guarantees that vanishing line will not pass through the
origin. Furthermore, if a point is in the convex hull of measurements in the distorted space,
then it is also in the convex hull of undistorted measurements. However, the change of basis
(i.e., a translation) is a function of the undistorted point, and thus a function of the unknown
division model parameter λ, so applying the coordinate transform increases the complexity of
the solvers. Empirically we did not find this degeneracy to be a problem. E.g., Figures 5.3c,
5.7c, and 5.7e show good undistortions of images and rectifications of imaged scene planes that
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have vanishing lines passing close to the center of distortion, which suggest that in these near-
degenerate cases the division-model parameter is sufficiently observable. Thus we choose to
preserve the simplicity of the solvers (see Table 5.3). A new origin in the undistorted space can
be defined by a distorted measurement in the convex hull of measurements, which will reduce
the chance of encountering the degeneracy, but not eliminate it.

5.6 Robust Estimation for Radially-Distorted Conjugate
Translations

The solvers are used in a LO-RANSAC-based robust-estimation framework [15, 74]. Affine rec-
tifications and undistortions are jointly hypothesized by one of the proposed solvers. A metric
upgrade is attempted and models with maximal consensus sets are locally optimized by an ex-
tension of the method introduced in [74]. The metric-rectifications are presented in the results.

5.6.1 Local Features and Descriptors

We use the Maximally-Stable Extremal Region and Hessian-Affine detectors as detailed in Sec-
tions 3.2.4 and 3.2.6 [62, 65]. The affine-covariant regions are given by an affine basis (see
Section 3.2.3), equivalently three distinct points, in the image space [69]. The image patch local
to the affine frame is embedded into a descriptor vector by the RootSIFT transform [4, 60] (see
Section 3.3.1). See Figure 3.11 for a visualization.

5.6.2 Detection, Description, and Clustering

Affine-covariant regions are clustered by appearance as described in Section 3.3.2. Since the
proposed H2luλ, H2lusuλ, H2lλ, and H22luvλ solvers do not admit reflections, the appearance-
clusters are partitioned based on the handedness of the affine frames associated with the clustered
embedded regions. Reflection partitioning is not necessary for the H22luvsvλ, which admits
reflections of similarity-covariant regions.

5.6.3 Sampling

Sample configurations for the proposed minimal solvers are illustrated in Figures 5.1, 5.5, and
5.6 as well as detailed in Sections 5.4.1 and 5.4.2. For each RANSAC trial, appearance clusters
are selected with the probability given by its relative cardinality to the other appearance clusters,
and the required number of correspondences are drawn from the selected clusters.

5.6.4 Metric Upgrade and Local Optimization

The affine-covariant regions that are members of the minimal sample are affine rectified by
each feasible model returned by the solver; typically there is only 1. Correspondences for the
selected solver are sampled as detailed in Section 5.6.3. The affine rectification estimated by the
minimal solver is used to build an affine-rectified scale consensus set. The scale consensus set is
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(a) Warp Error for Noiseless Features
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(b) Warp Error for Noisy Features
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Figure 5.8: Warp Error Stability and Sensitivity Studies. (a) Hidden-variable trick solvers are
solid; solvers generated without simplified constraints equations are dashed. The
log10 RMS warp error ∆warp

RMS is reported for noiseless scenes generated as described
in Sections 2.12 and 5.7.1. The hidden-variable trick increases stability. The EVL
H2lλ solver is the most stable since it does not require solving a complicated polyno-
mial system of equations. (b) Reports the RMS error ∆warp

RMS (see Section 2.12) after
25 iterations of a simple RANSAC for the bench of solvers with increasing levels of
white noise added to the affine-covariant region correspondences, where the normal-
ized division model parameter is set to -4 (see Section 2.11), which is similar to the
distortion of a GoPro Hero 4. Results are for radial-distorted conjugate translations.
The proposed solvers demonstrate excellent robustness to noise, and the EVL solver
H2lλ is competitive with HDES

222 lλ, which requires two more correspondences. The
H2lλ solver uses best minimal solution selection (see Section 5.4.2), which improves
its performance compared to HRND

2 lλ, which randomly selects a solution.

built by using the scale constraint of affine-rectified space: two instances of rigidly-transformed
coplanar repeats occupy identical areas in the scene plane and in the affine rectified image of
the scene plane [20, 14, 32], see also Chapter 6. Note that if clustered left and right-handed
regions were partitioned for sampling with the H2luλ, H2lusuλ, H2lλ, and H22luvλ solvers,
then they are merged so they are jointly verified for scale consistency. Absolute scales are
calculated to account for handedness. The log-scale ratio of the each region in a cluster is
computed with respect to the median affine-rectified scale. Note that covariant regions extracted
from imaged rigidly-transformed coplanar texture can enter the scale consensus set since they
will be equi-scalar after affine rectification, too. This admits the possibility of a full-metric
upgrade. Regions with near 0 log-scale ratio with respect to the median scale of their cluster are
considered tentatively inlying, and are used as inputs to the metric upgrade of Pritts et al. [74],
which restores congruence.
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The congruence consensus set is measured in the metric-rectified space by verifying the con-
gruence of the linear basis vectors of the corresponded affine frames. Congruence is an invariant
of metric rectified space and is a stronger constraint than, e.g., the equal-scale invariant of affine-
rectified space that was used to derive the solvers proposed in [14] and in Chapter 6. The metric
upgrade essentially comes for free by inputting the covariant regions that are members of the
scale consensus set to the linear metric-upgrade solver proposed in [74]. By using the metric
upgrade, the verification step of RANSAC can enforce the congruence of corresponding covariant
region extents (equivalently, the lengths of the linear basis vectors) to estimate an accurate con-
sensus set. A model with the maximal congruence consensus set at the current RANSAC iteration
is locally optimized in a method similar to [74].

5.7 Experiments

The stabilities and noise sensitivities of the proposed solvers are evaluated on synthetic data. We
compare the proposed solvers to a bench of the four state-of-the-art solvers (see Table 5.2). We
apply the denotations for the solvers introduced in Section 2.2 to all the solvers in the benchmark;
e.g., a solver requiring two correspondences of two affine-covariant regions will be prefixed by
H22.

Included is the state-of-the-art joint undistorting and rectifying solver HDES
222 lλ of Chapter 6,

which requires 3 correspondences of affine-covariant regions extracted from the image of rigidly-
transformed coplanar repeated scene textures. While 6 variants of undistorting and rectifying
solvers are proposed in Chapter 6, we test only the HDES

222 lλ solver since all variants are reported
to have similar noise sensitivities.

The bench includes the H2l solver of Schaffalitzky et al. [82], which incorporates similar con-
straints from conjugate translations that are used to derive the proposed solvers. Also included
are two full-homography and radial-undistortion solvers, the H22λ solver of Fitzgibbon et al.
[26] and the H22λ1λ2 solver of Kukelova et al. [45], which are used to assess the benefits of
jointly solving for radially-distorted conjugate translations (and lens undistortion) from the min-
imal problem, as done with the proposed solvers, versus the over-parameterized problem as in
[26, 45]. The bench of state-of-the-art solvers is summarized in Table 5.2.

The sensitivity studies evaluate the solvers on noisy measurements over 3 task-related per-
formance metrics: 1. the transfer error (see Section 5.7.1 and Figure 5.9a), which measures the
accuracy of radially-distorted conjugate translation estimation 2. the root mean square warp er-
ror ∆warp

RMS (see Figure 5.8b and Section 2.12), which measures rectification accuracy, and 3. the
relative error Figure 5.9b of the division-model parameter estimate, which reports the accuracy
of the lens undistortion estimate.

The stability study Figure 5.8a evaluates the proposed solvers by the warp error on noiseless
measurements. The study demonstrates the benefit of constraint simplification by the hidden-
variable trick (see Section 4.2 and [18]), which is used to derive both the EVP solvers and
EVL solver, and shows that it improves the stability of all solvers, and, in fact, it is sometimes
necessary to generate usable solvers.
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(a) Transfer Error
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(b) Relative Undistortion Error
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Figure 5.9: Transfer Error and Undistortion Error For Noisy Features. Comparison of two error
measures after 25 iterations of a simple RANSAC for different solvers with increasing
levels of white noise added to the affine covariant region correspondences, where the
normalized division model parameter is set to -4 (see Sec. 3.1), which is similar
to the distortion of a GoPro Hero 4. Results are for translated coplanar repeats.
(a) Reports the root mean square transfer error Section 5.7.1) With the exception of
the HDES

222 lλ solver, the proposed solvers are significantly more robust for both types of
repeats on both error measures; however HDES

222 lλ requires the most correspondences,
and (b) reports the relative error of the estimated division model parameter. The H2lλ
solver uses best minimal solution selection (see Section 5.4.2), which improves its
performance compared to HRND

2 lλ, which randomly selects a solution.

5.7.1 Synthetic Data

The performance of the proposed solvers on 1000 synthetic images of 3D scenes with known
ground-truth parameters is evaluated. A camera with a random but realistic focal length is ran-
domly placed with respect to a scene plane such that it is mostly in the camera’s field-of-view.
The image resolution is set to 1000x1000 pixels. The noise sensitivities of the solvers are evalu-
ated on conjugately-translated coplanar repeats (see Figure 5.9a, 5.8b, and 5.9b). Affine frames
(see Section 3.2.3) are generated on the scene plane such that their scale with respect to the
scene plane is realistic. The modeling choice reflects the use of affine-covariant region detec-
tors on real images. The image is distorted according to the division model. For the sensitivity
experiments, isotropic white noise is added to the distorted affine frames at increasing levels.

Transfer Error

The geometric transfer error of Figure 5.9a measures the accuracy of the estimated radially-
distorted conjugate translation (see Section 5.3). The scene plane is tessellated by a 10x10
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grid of points with a 1 unit spacing between adjacent points. The tessellation ensures that the
imaged scene plane is uniformly covered by features. In this way, the accuracy of the estimated
radially-distorted conjugate translation can be measured across most of the image. Denote the
tessellation as {Xi }100

i=1. Suppose that x ↔ x′ are conjugately-translated points consistent with
Hu = [I3 +ul>]. Points {Xi }100

i=1 are translated to {X′i }100
i=1 by 1 unit on the scene plane in the

direction given by the translation direction U. The conjugate translation Hu is not used directly
because its translation magnitude may span the extent of the scene plane, so applying it to the
tessellation would transform the grid out of the field of view.

The preimage of the translation direction is βU = P−1u = β
(
ux, uy, 0

)>. Then ‖U‖ is
the magnitude of translation between the repeated scene elements in the scene-plane coordinate
system. Define the homogeneous translation matrix defined by U to be

T
((
tx, ty, α

)>)
=

1 0 tx
0 1 ty
0 0 1

 . (5.19)

The translation of the grid points by unit distance in the scene plane coordinate system is given
by X′ = T(U/‖U‖)X. Recall from (2.22) that a conjugate translation has the form PT(·)P−1.
Using the decomposition in (2.23), the conjugate translation of unit distance in the direction of
point correspondences x ↔ x′ is

Hu/‖U‖ = PI3P
−1 + P

ux/‖U‖uy/‖U‖
0

P−>
0

0
1

> = [I3 +
u

‖U‖ l
>]. (5.20)

The unit conjugate translation Hu/‖U‖ can be written in terms of the conjugate translation Hu
induced by the undistorted point correspondence x ↔ x′ as

I3 +
u

‖U‖ l
> = I3 +

1

‖U‖ [I3 + ul> − I3] = I3 +
1

‖U‖ [Hu − I3]. (5.21)

Thus the radial distorted conjugate translation of unit distance is given by

γx̃′ = fd([I3 +
1

‖U‖(Ĥu − I3)]f(x̃, λ), λ), (5.22)

where fd is the function that transforms from pinhole points to radially-distorted points.
The imaged grid is given by x̃i = fd(PXi, λ) and the translated grid by x̃′i = fd(PX′i, λ).

Then the geometric transfer error is defined as

∆xfer = d(fd([I3 +
1

‖U‖(Ĥu − I3)]f(x̃, λ̂1), λ̂2), x̃′), (5.23)

where d(·, ·) is the Euclidean distance.
All solvers except H22λ1λ2 have the constraint that λ̂1 = λ̂2 [45]. The root mean square
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GoPro Hero 4 Wide,
17.2mm

H2l + LO; 11.2%
inliers

H2luλ +LO; 20.4%
inliers

H22luvλ +LO; 20.2%
inliers

Figure 5.10: GoPro Hero 4 at the wide setting for different solvers. Results from LO-RANSAC

(see Section 5.6) for H2l, which omits distortion, and the proposed solvers H2luλ
and H22luvλ. The top row has rectifications after local optimization (LO); The bot-
tom row has undistortions estimated from the best minimal sample. LO-RANSAC

cannot recover from the poor initializations by H2l (column 2). The proposed
solvers in columns 3 and 4 give a correct rectification. The bottom left has a chess-
board undistorted using the division parameter estimated from the building facade
by H2luλ +LO.

transfer error ∆xfer
RMS for radially-distorted conjugately-translated correspondences x̃i ↔ x̃′i is

reported. For two-direction solvers, the transfer error in the second direction is included in
∆xfer

RMS. The transfer error is used in the sensitivity study, where the solvers are tested over
varying noise levels with a fixed division model parameter.

Numerical Stability

The stability study Figure 5.8a measures the RMS warp error ∆warp
RMS of solvers (see Section 2.12)

for noiseless radially-distorted conjugately-translated affine frame correspondences across real-
istic scene and camera configurations generated as described in the introduction to this section.
The normalized ground-truth division-model parameterλ is drawn uniformly at random from the
interval [−6, 0]. For a reference, the division parameter of λ = −4 is typical for wide field-of-
view cameras like the GoPro Hero 4, where the image is normalized by 1/(width + height).
Figure 5.8a reports the histogram of log10 warp errors ∆warp

RMS.
For the proposed EVP solvers we evaluate a solver generated from constraints derived with

(solid histogram) and without (dashed histogram) the hidden-variable trick (see Section 4.2).
The hidden-variable trick significantly improves the stability of the proposed solvers. The in-
creased stabilities of the hidden-variable solvers (see Figure 5.8a) most likely result from the
reduced size of the Gauss-Jordan elimination problems needed by these solvers. The hidden-
variable EVP solvers are used for the remainder of the experiments. The proposed EVL solver
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H2lλ is derived with the hidden-variable trick as well, which results in a quartic. The supe-
rior stability of the H2lλ solver (see Figure 5.8a) demonstrates the benefits of the elementary
formulation.

Noise Sensitivity

The proposed and state-of-the-art solvers are tested with increasing levels of white noise added to
the points extracted (see Section 3.2.3) from the radially-distorted conjugately-translated affine-
covariant region correspondences (see Figure 5.9). The amount of white noise is given by the
standard deviation of a zero-mean isotropic Gaussian distribution, and the solvers are tested at
noise levels of σ ∈ { 0.1, 0.5, 1, 2 }. The ground-truth normalized division model parameter is
set to λ = −4, which is typical for GoPro-type imagery in normalized image coordinates.

The solvers are wrapped by a basic RANSAC estimator that minimizes either the RMS warp
error ∆warp

RMS (see Figure 5.8b), the RMS transfer error (see Figure 5.9a) ∆xfer
RMS, or the relative

error of lens distortion (see Figure 5.9b) over 25 minimal samples of affine frames. The RANSAC

estimates are summarized in boxplots for 1000 synthetic scenes. The interquartile range is con-
tained within the extents of a box, and the median is the horizontal line dividing the box.

The proposed solvers—H2luλ,H2lusuλ,H22luvλ,H22luvsvλ, and H2lλ—demonstrate excel-
lent robustness to noisy features across all three error measures. In particular, the H2lλ solver is
the least sensitive to noise of the proposed solvers and gives the best undistortion estimates of
any solver in the bench (see Figure 5.9b). Figure 5.8b shows that at the 2 pixel noise level, all the
proposed solvers rectify with less than 5 pixel RMS warp error ∆warp

RMS more than half the time.
Figure 5.9a shows that radially-distorted conjugate translations are estimated with less than 3
pixel RMS transfer error ∆xfer

RMS error more than half the time. All proposed solvers estimate
the correct lens distortion parameter more than half the time (see Figure 5.9b) with the H2lλ
performing the best of any solver in the bench on this study.

For both the warp error and transfer error studies, the H2l solver of Schaffalitzky et al. [82]
shows significant bias since it does not model lens distortion, making it essentially unusable as a
minimal solver at GoPro-like levels of radial lens distortion. As expected, the overparmeterized
radial-distortion homography solvers of H22λ [26] Fitzgibbon and H22λ1λ2 [45] of Kukelova et
al. have significantly higher transfer errors with respect to the proposed solvers, which suggests
that the extraneous degrees of freedom are used to explain feature noise by incorrect geometry.
In fact, at the two pixel noise level of the transfer error study in Figure 5.9a, the performance of
these solvers is worse than the H2l solver, which does not model radial lens distortion.

The state-of-the art solver HDES
222 lλ of Chapter 6 shows slightly better noise robustness than

the proposed solvers on the warp and transfer error sensitivity studies. However, the proposed
solvers are competitive and require fewer correspondences. In particular, the H2lλ reaches near
parity with the HDES

222 lλ solver and requires only one region correspondence versus three required
by the HDES

222 lλ solver. As is shown in Section 5.7.2, the proposed solvers are magnitudes faster in
wall clock time. Given their competitive performance in the sensitivity studies and the fact that
they require fewer correspondences and have faster times to solution, the proposed solver should
be preferred to the HDES

222 lλ solver for images with radially-distorted conjugate translations.
Note that the H22λ solver of [26] and the H22λ1λ2 solver of [45] are omitted from the warp
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Solver Wall Clock Relative Speed Template Size

H2lλ 0.5 µs 1.0× N/A
H2luλ 3.7 µs 7.4× 14× 18

H2lusuλ 6.1 µs 12.2× 24× 26
H22luvλ 34.6 µs 69.2× 54× 60

H22luvsvλ 66.1 µs 132.2× 76× 80
HDES
222 lλ (Chapter 6) 1076.8 µs 2153.6× 133× 187

Table 5.3: Runtime Analysis. Wall-clock times are reported for optimized C++ implementations
of the proposed solvers versus HDES

222 lλ of Chapter 6, which was the only competitive
solver from the noise sensitivity experiments. The EVL solver is 2153.6× faster than
HDES

222 lλ, and the other proposed variants are orders of magnitude faster.

error since the vanishing line is not directly estimated.
Each of the H2lλ and HDES

222 lλ solvers requires the ex-post estimation of vanishing point of the
translation direction, which is accomplished by the method proposed in Section 5.4.2. Surpris-
ingly, the sequential estimation used by the proposed H2lλ and the HDES

222 lλ solver of Chapter 6
achieve the best performances on the transfer error ∆xfer

RMS. This is explainable by the improved
performance of the H2lλ EVL solver with respect to the EVP solvers on all measures, and the
fact that the HDES

222 lλ solver uses three correspondences, the most of any in the bench of solvers
(see Table 5.2).

The benefit of best minimal solution selection as proposed in (5.4.2) can be seen by compar-
ing the HRND

2 lλ and H2lλ solvers in all sensitivity studies. To quickly recap, The HRND
2 lλ solver

randomly selects a minimal solution from 10 possible solutions given by the EVL geometry
shown in Figure 5.6, while the H2lλ chooses the solution that minimizes a geometric error on
the unused constraints (see Section 5.4.2 for details). The sensitivity improvements using min-
imal solution selection are considerable: at the 2 pixel noise levels, the RMS warp error ∆warp

RMS

(Figure 5.8b) and RMS transfer error (Figure 5.9a) decreased by 26% and 28%, respectively,
and the interquartile range of division model parameter estimates decreased by 61%. In fact, the
incorporation of best minimal solution selection puts the performance of the H2lλ solver on par
with the HDES

222 lλ solver, which requires two more region correspondences.

5.7.2 Computational Complexity

Table 5.3 lists the wall-clock time to solution for the optimized C++ implementations of the
proposed solvers and the HDES

222 lλ solver of Chapter 6, which was the only competitive solver
from the sensitivity experiments reported in Figures 5.9a, 5.8b, and 5.9b. Also reported for easy
comparison are the relative speeds with respect to the H2lλ solver and the elimination template
sizes, where applicable. The proposed EVL H2lλ solver is an astounding 2153.6× faster than
the HDES

222 lλ solver and significantly faster than all EVP solvers (H2luλ,H2lusuλ,H22luvλ, and
H22luvsvλ), which require the Gröbner basis method to solve polynomial systems of equations.
All of the proposed solvers are much faster than the HDES

222 lλ solver, making them more suitable
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Figure 5.11: Narrow Field of View and Diverse Scene Content. The proposed solvers works well
if the input image has little or no radial lens distortion. This imagery is typical of
consumer cameras and mobile phone cameras. The images are diverse and contain
unconventional scene content. Input images are on the top row; undistorted images
are on the middle row, and the rectified images are on the bottom. Results were
generated with the H2luλ solver.

for fast sampling in RANSAC for scenes containing translational symmetries.

5.7.3 Real Images

In the experiments on real images shown in Figures 5.1 and 5.3, we tested the proposed solvers
on GoPro4 Hero 4 images with increasing field-of-view settings—medium and wide, where the
wider field-of-view setting generates more extreme radial distortion since the full extent of the
lens is used. To span the gamut of lens distortions in the field-of-view study of Figure 5.3, we
included a Samyang 7.5mm fisheye lens. The consistency of the undistortion estimate at the
same GoPro Hero4 field-of-view setting can be seen by comparing the undistortions between
the medium GoPro Hero 4 images in Figure 5.3a and the undistortions between the wide GoPro
images in Figures 5.1 and 5.3b. Despite significantly different image content and sensor ori-
entation, the undistortions are of comparable magnitude at the same setting. Rectification are
accurate for all GoPro Hero 4 images, and the image of the distorted vanishing line is correctly
positioned (rendered in green) in the original images. Despite using the 1-parameter division
model for lens undistortion (see Section 2.11), an excellent rectification is achieved for the fish-
eye distorted image taken with the Samyang 7.5mm lens in Figure 5.3c, and the horizon line is
perfectly estimated.

Figure 5.7 shows results obtained with 1-correspondence sampling using the proposed H2lλ
EVL solver on very challenging fisheye images. Images from five distinct fisheye lenses are
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evaluated with Figures 5.7b, 5.7c, and 5.7e having highly oblique viewpoints of the dominant
scene plane. Accurate rectifications and undistortions are achieved for all images, and the dis-
torted image of the vanishing line (rendered in green) is correctly positioned. The limitations of
the 1-parameter division model can be seen with extreme radial distortions, as, e.g., Figures 5.7c
and 5.7d exhibit some mustache distortion, which cannot be modeled with 1 parameter. How-
ever, the local optimizer of [74] could be modified to regress a higher-order distortion model
using the results of Figure 5.7 as an initial guess. We leave this for future work.

Figures 5.3c, 5.7c, and 5.7e contain imaged scene planes with vanishing lines that pass near
the image origin (equivalently, center of distortion), which is a degeneracy of the solver (see
Section 5.5). Still excellent results are achieved, which empirically demonstrates that even for
vanishing lines passing very close to the image center, the lens distortion is sufficiently observ-
able. In practice the degeneracy does not seem to be a problem.

The experiment shown in Figure 5.10 compares the performance of two of the proposed
solvers H2luλ and H22luvλ to the conjugate translation solver H2l of Schaffalitzky et al. [82] in
the coplanar repeat detection and rectification framework of Pritts et al. [74] (see Sec. 5.6) with
a GoPro Hero 4 image at the wide field-of-view setting. The two proposed solvers accurately
estimate the division-model parameter (see the undistorted reference chessboard in Figure 5.10)
and the rectification, while the estimation framework using the H2l solver is unable to recover
the lens distortion parameter. The rectification quality is also reflected by the number of inlying
features found, which is nearly double for the proposed solvers with respect to the solver of [82].
The experiment demonstrates the non-convexity of the problem, and emphasizes the need for a
good initial guess by the minimal solver for the local optimizer of [74].

The narrow field of view and diverse content experiment of Figure 5.11 shows the perfor-
mance of the proposed method on imagery typical from cell phone cameras and near rectilinear
lenses. The left 3 columns of the study are challenging since the conjugate translations and
reflections are extracted a small strip of the image. Still the rectifications are accurate.

5.8 Discussion

This chapter proposes a suite of simple high-speed solvers for jointly undistorting and affine-
rectifying images containing radially-distorted conjugate translations. The proposed solvers
contain variants that relax the assumptions that the preimages of radially-distorted conjugately-
translated point correspondences are translated by the same magnitude in the scene plane, and
that all point correspondences translate in the same direction. Furthermore, a variant is pro-
posed that admits reflections of similarity-covariant region correspondences, which is helpful
for searching for correspondences for semi-metric rectification.

The EVL H2lλ solver admits the same point configuration as the one-direction EVP solver
H2luλ, but is much simpler (i.e., does not require the Gröbner bases method), more stable, and
is 7.4× faster in terms of wall-clock time to solution. The improvement is given by the choice
to eliminate the vanishing line instead of the vanishing point. The significant difference empha-
sizes the importance of care in solver design; in particular, the need to simplify the constraint
equations. While Gröbner bases related methods are powerful and somewhat general, their blind
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application for solver generation can result in slow and unstable solvers. E.g., in Chapter 6 we
were unable to reduce the degree of their constraint equations used for the HDES

222 lλ solver, which
resulted in slow solver (see Table 5.3). Furthermore, stability sampling was required to generate
useful solvers [54].

Synthetic experiments show that the EVP and EVL solvers are significantly more robust to
noise in terms of the accuracy of rectification and radially-distorted conjugate translation esti-
mation than the radial-distortion homography solvers of Fitzgibbon and Kukelova et al. [26, 45].
The experiment verifies the importance of solving the minimal problem since the extraneous de-
grees of freedom of the radial-distortion homography solvers are free to explain the noise with
incorrect geometry. Furthermore, the proposed solvers are competitive with the robustness of
the state-of-the-art HDES

222 lλ solver of Chapter 6 despite the fact that the HDES
222 lλ solver requires

two more region correspondences as input (compared to H2lλ, H2luλ, and H2lusuλ). The ad-
vantage of the proposed solvers is more pronounced if the combinatorics of the robust RANSAC

estimator are considered, where one correspondence sampling makes it possible to solve scenes
with a very-low proportion of good correspondences.

Experiments on difficult images with large radial distortions confirm that the solvers give
high-accuracy rectifications if used inside a robust estimator. By jointly estimating rectifica-
tion and radial distortion, the proposed minimal solvers eliminate the need for sampling lens
distortion parameters in RANSAC.
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6
Minimal Solvers for Rectifying
from Radially-Distorted Scales

and Change of Scales

This chapter introduces the first minimal solvers that jointly estimate lens distortion and affine
rectification from the image of rigidly-transformed coplanar features. The solvers work on
scenes without straight lines and, in general, relax strong assumptions about scene content made
by the state of the art. The proposed solvers use the affine invariant that coplanar repeats have
the same scale in rectified space. The solvers are separated into two groups that differ by how the
equal scale invariant of rectified space is used to place constraints on the lens undistortion and
rectification parameters. We demonstrate a principled approach for generating stable minimal
solvers by the Gröbner basis method, which is accomplished by sampling feasible monomial
bases to maximize numerical stability. Synthetic and real-image experiments confirm that the
proposed solvers demonstrate superior robustness to noise compared to the state of the art. Ac-
curate rectifications on imagery taken with narrow to fisheye field-of-view lenses demonstrate
the wide applicability of the proposed method. The method is fully automatic.

6.1 Introduction

The state of the art has several approaches for rectifying (or partially calibrating) a distorted im-
age, but these methods make restrictive assumptions about scene content by assuming, e.g., the
presence of sets of parallel scene lines [3, 94] or translational symmetries (Chapter 5). The pro-
posed solvers relax the need for specific assumptions about scene content to unknown repeated
structures (see Table 6.1).

The proposed minimal solvers exploit the scale constraint: two instances of rigidly-transformed
coplanar repeats occupy identical areas in the scene plane and in the affine rectified image of the
scene plane (e.g., see the rectifications in Figures 6.2, 6.3, and 6.4). There are two groups
of solvers introduced in this chapter: the directly-encoded-scale and change-of-scale solvers,
which are differentiated by the way in which the scale constraint is used. The directly-encoded-
scale solvers, which we acronymize as the DES solvers for short, encode the unknown area of a
rectified region as a dependent function of the measured region, vanishing line, and undistortion
parameter (see Section 6.3). The change-of-scale solvers – CS solvers for short – linearize the
undistorting and rectifying transformation and use its Jacobian determinant to induce constraints
on the unknown undistortion and rectification parameters (see Section 6.4). The Jacobian deter-
minant measures the local change-of-scale of the rectifying transformation (and, more generally,
of any differentiable transformation).

There are three different minimal configurations of corresponding features that provide a suf-
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Figure 6.1: Inputs and Outputs. Input (top left) is a distorted view of a scene plane, and the
outputs (top right, bottom) are the undistorted and rectified scene plane. The method
is fully automatic.

ficient number of constraints to solve for the unknown undistortion and rectification parameters
(see Section 6.3.3). The minimal configurations are shown in Figure 6.4 and are the same for
the DES and CS groups of solvers. We generate solvers for all input configurations for both
groups of solvers to provide for flexible sampling during robust estimation. The solvers are fast
and robust to noisy feature detections, so they work well in robust estimation frameworks like
RANSAC [24].

6.1.1 Previous Work

Several state-of-the-art methods can rectify from imaged coplanar repeated texture, but these
methods assume the pinhole camera model [1, 2, 14, 20, 61, 71, 98]. A subset of these methods
introduce solvers that use algebraic constraints induced by the equal-scale invariant of affine-
rectified space [14, 20, 71] in a similar formulation to the proposed solvers (see Figure 6.2).
These methods are members of the change-of-scale (CS) solver group (see Section 6.4) since
they use the Jacobian determinant of the affine-rectifying transformation to induce constraints
on the imaged scene plane’s vanishing line. To complete the family of affine-rectifying minimal
solvers for pinhole cameras [14, 20, 71], we also construct and evaluate a novel DES solver that
assumes the pinhole camera model in Section 6.3.5.

Chapter 5 proposes minimal solvers that jointly estimate affine rectification and lens undistor-
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Figure 6.2: A Shortcut to Affine Rectification. The hierarchy of rectifications from distorted to
metric space is traversed clockwise from the top left. The proposed method is a
direct path to affine-rectified space using only rigidly-transformed coplanar repeats,
in contrast to the state of the art, which requires scene lines or sampled undistortions.
The scene plane’s vanishing line is shown in the original and undistorted image (̃l
and l, respectively). The affine-covariant regions are in the 222-configuration (see
Section 6.3.2), where corresponded coplanar regions are the same color. All affine-
rectified images are metrically upgraded with the method of [74] for presentation
(see Section 6.5.3).

tion, but this method is restricted to scene content with translational symmetries (see Table 6.1).
We show that the conjugate translation solvers of Chapter 5 are more noise sensitive than the
proposed scale-based solvers (see Figures 6.7 and 6.8).

6.2 Preliminaries

The polynomial system of equations encoding the rectifying constraints is solved using an al-
gebraic method based on Gröbner bases. Automated solver generators using the Gröbner basis
method [44, 48] have been used to generate solvers for several camera geometry estimation
problems [44, 45, 48, 49], see also Chapter 5. However, the straightforward application of auto-
mated solver generators to the proposed constraints resulted in unstable solvers (see Section 6.6).
Recently, Larsson et al. [54] sampled feasible monomial bases, which can be used in the action-
matrix method. In [54] basis, sampling was used to minimize the size of the solver. We modified
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Wildenauer et al. [94] Antunes et al. [3] Chapter 5 Proposed

Feature Type fitted circles fitted circles affine-covariant affine-covariant
Assumption 3 & 3 parallel lines 3 & 4 parallel lines 2 trans. repeats 4 repeats

Rectification multi-model multi-model direct direct

Table 6.1: Scene Assumptions. Solvers [94, 3] require distinct sets of parallel scene lines as
input and multi-model estimation for rectification. Solvers of Chapter 5 are restricted
to scenes with translational symmetries. The proposed solvers directly rectify from
as few as 4 rigidly transformed repeats (also see Figure 6.4).

the objective of [54] to maximize for solver stability. Stability sampling generated significantly
more numerically stable solvers (see Fig. 6.6).

6.3 The Directly-Encoded Scale (DES) Solvers

The proposed DES solvers use the invariant that rectified coplanar repeats have equal scales. In
Sections 6.3.1 and 6.3.2 the equal-scale invariant is used to formulate a system of polynomial
constraint equations on rectified coplanar repeats with the vanishing line and radial undistortion
parameter as unknowns. The radial lens undistortion function is parameterized with the one-
parameter division model as defined in Section 2.11. Affine-covariant region detections are used
to model repeats since they encode the necessary geometry for scale estimation (see Figure 6.4
and Section 6.5.1). The geometry of an affine-covariant region is uniquely given by an affine
frame (see Section 6.3.1). The solvers require 3 points from each detected region to measure the
region’s scale in the image space. The scale of the rectified coplanar repeat is defined as the area
of the triangle defined by the 3 rectified points that represent a corresponding affine-covariant
region.

Three minimal cases exist for the joint estimation of the vanishing line and division-model pa-
rameter (see Figure 6.4 and Section 6.3.2). These cases differ by the number of affine-covariant
regions needed for each detected repetition. The method for generating the minimal solvers for
the three variants is described in Section 6.3.4. Finally, in Section 6.3.5, we show that if the
undistortion parameter is given, then the constraint equations simplify, which results in a small
solver for estimating rectification under the pinhole camera assumption.

6.3.1 Equal Scales Constraint from Rectified Affine-Covariant Regions

Let
[
x̃i,1 x̃i,2 x̃i,3

]
be the point parameterization of an affine-covariant region R̃i detected in

a radially-distorted image (see Section 3.2.3 for a discussion on the point parameterization of
a covariant region). Then, by (2.36), the point parameterization of an affine-rectified image of
R̃i—namelyRi—is[

Hf(x̃i,1, λ) Hf(x̃i,2, λ) Hf(x̃i,3, λ)
]

=
[
αi,1xi,1 αi,2xi,2 αi,3xi,3

]
, (6.1)
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Figure 6.3: Wide-Angle Results. Input (top left) is an image of a scene plane. Outputs include the
undistorted image (top right) and rectified scene planes (bottom row). The method
is automatic.

where αi,j = l>f(x̃i,j , λ). Thus the scale si of Ri is given as an area of a triangle defined by
points in (6.1) as

si =
det
([
αi,1xi,1 αi,2xi,2 αi,3xi,3

])
αi,1αi,2αi,3

=
1

αi,1αi,2αi,3
·

∣∣∣∣∣∣
x̃i,1 x̃i,2 x̃i,3
ỹi,1 ỹi,2 ỹi,3
αi,1 αi,2 αi,3

∣∣∣∣∣∣
=

∣∣∣∣x̃i,2 x̃i,3
ỹi,2 ỹi,3

∣∣∣∣
αi,2αi,3

−

∣∣∣∣x̃i,1 x̃i,3
ỹi,1 ỹi,3

∣∣∣∣
αi,1αi,3

+

∣∣∣∣x̃i,1 x̃i,2
ỹi,1 ỹi,2

∣∣∣∣
αi,1αi,2

.

(6.2)

The numerators of the second and third expressions in (6.2) depend only on the undistortion
parameter λ and l3 due to cancellations in the determinant. The sign of si depends on the hand-
edness of the detected affine-covariant region. See Section 6.3.7 for a method to use reflected
affine-covariant regions with the proposed solvers.

6.3.2 Eliminating the Rectified Scales

The affine-rectified scale in si (6.2) is a function of the unknown undistortion parameter λ and
vanishing line l =

(
l1, l2, l3

)>. This encoding of the rectified scale is the motivation for calling
this solver group the Directly-Encoded Scale (DES) solvers. A unique solution to (6.2) can be
defined by restricting the vanishing line to the affine subspace l3 = 1 or by fixing a rectified
scale, e.g., s1 = 1. The inhomogeneous representation for the vanishing line is used since it
results in degree 4 constraints in the unknowns λ, l1, l2 and si as opposed to fixing a rectified
scale, which results in complicated equations of degree 7.

Let R̃i and R̃j be repeated affine-covariant region detections. Then the scales si and sj of
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Input

222 32 4

HDES
222 lλ HDES

32 lλ HDES
4 lλ

Figure 6.4: Solver Variants. (top-left image) The input to the method is a single image. (bottom-
left triptych, contrast enhanced) The three configurations—222, 32, 4—of affine
frames that are inputs to the proposed solvers variants. Corresponded frames have
the same color. (top row, right) Undistorted outputs of the proposed solver variants.
(bottom row, right) Cutouts of the dartboard rectified by the proposed solver variants.
The affine frame configurations—222, 32, 4—are transformed to the undistorted and
rectified images. The rectifications were estimated by the proposed directly-encoded
scale (DES) solvers (see Section 6.3), but the input configurations are the same for
the proposed change-of-scale (CS) solvers (see Section 6.4).

affine-rectified regionsRi andRj are equal, namely si = sj . Thus the unknown rectified scales
of a corresponded set of n affine-covariant repeated regions s1, s2, . . . , sn can be eliminated in
pairs, which gives n − 1 algebraically independent constraints and

(
n
2

)
polynomial equations

that are obtained by cross multiplying the denominators of the rational equations si = sj . After

eliminating the rectified scales, 3 unknowns remain, l =
(
l1, l2, 1

)> and λ, so 3 constraints are
needed.

6.3.3 Solver Variants

There are 3 minimal configurations for which we derive 3 solver variants: (i) 3 affine-covariant
region correspondences, which we denote as the 222-configuration; (ii) 1 corresponded set of 3
affine-covariant regions and 1 affine-covariant region correspondence, denoted the 32-configu-
ration; (iii) and 1 corresponded set of 4 affine-covariant regions, denoted the 4-configuration.

The notational convention introduced for the input configurations — (222, 32, 4) — is ex-
tended to the change-of-scale solvers introduced in Section 6.4 and the bench of state-of-the-art
solvers evaluated in the experiments (see Section 6.6) to make comparisons between the inputs
of all the solvers easier. See Figure 6.4 for examples of all input configurations and results from
each corresponding solver variant, and see Table 6.2 for a summary of all the tested solvers.
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Reference Rectifies Undistorts Motion # Regions # Sols. Size Linearized

H2l Chapter 5 X X trans. 2 2 24x26
H22l Chapter 5 X X trans. 4 4 76x80
H22λ [26] X rigid1 4 18 18x18
HDES
22 l X rigid 4 9 12x21

HDES
222 lλ X X rigid 6 54 133x187

HDES
32 lλ X X rigid 5 45 154x199

HDES
4 lλ X X rigid 4 36 115x151
HCS
22l [14] X rigid 4 1 4x4 X

HCS
222lλ X X rigid 6 54 133x187 X

HCS
32lλ X X rigid 5 45 154x199 X

HCS
4 lλ X X rigid 4 36 115x151 X

1 The preimages of both region correspondences must be related by the same rigid trans-
form in the scene plane.

Table 6.2: State of the Art vs. Proposed Solvers (shaded in grey). The proposed solvers return
more solutions, but typically only 1 solution is feasible (see Figure 6.9). Note that
the directly-encoded-scale (DES) solvers (shaded in light grey, see Section 6.3) have
the same template size as the change-of-scale (CS) solvers (shaded in dark grey, see
Section 6.4), despite being generated from different constraints. The HCS

22 l solver of
[14] is part of the change-of-scale group of solvers but assumes a pinhole camera
model.

The system of equations is of degree 4 regardless of the input configuration and has the form

αj,1αj,2αj,3

3∑
k=1

(−1)kM
(i)
3,kαi,k = αi,1αi,2αi,3

3∑
k=1

(−1)kM
(j)
3,kαj,k, (6.3)

where M
(i)
3,k is the (3, k)-minor of the rectified point-parameterization matrix[

αi,1xi,1 αi,2xi,2 αi,3xi,3
]

defined by (6.1).

Note that the minors M (i)
3,· are constant coefficients (see (6.2)). The 222-configuration results

in a system of 3 polynomial equations of degree 4 in three unknowns l1, l2 and λ; the 32-
configuration results in 4 equations of degree 4, and the 4-configuration gives 6 equations of
degree 4. Only 3 constraints are needed, but we found that for the 32- and 4- configurations
that all

(
n
2

)
equations must be used to avoid spurious solutions that are introduced when the

rectified scales are eliminated and the original rational equations si = sj are multiplied with
their denominators. For example, if only the polynomial equations coming from the constraints
s1 = s2, s1 = s3, s1 = s4 are used for the 4-configuration

αi,1αi,2αi,3

3∑
k=1

(−1)kM
(j)
3,kα1,k = α1,1α1,2α1,3

3∑
k=1

(−1)kM
(i)
3,kαi,k i = 2, 3, 4, (6.4)

then λ can be chosen such that
∑3

k=1(−1)kM
(i)
3,kα1,k = 0, and the remaining unknowns l1 or
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6.3 The Directly-Encoded Scale (DES) Solvers

l2 chosen such that α1,1α1,2α1,3 = 0, which gives a 1-dimensional family of solutions. Thus,
adding two additional equations removes all spurious solutions. Furthermore, including all equa-
tions simplified the elimination template construction.

In principle, a solver for the 222-configuration can be applied to the 32- and 4-configurations
by duplicating the corresponding points in the input. Depending on how the points are dupli-
cated, different results are obtained. In practice we observed that if, as above, we select the
input such that s1 = s2, s1 = s3, s1 = s4, the solver breaks down. This is expected since the
ideal is no longer zero-dimensional. However, other input configurations, e.g. s1 = s2, s2 = s3,
s3 = s4, allow us to recover the same solutions as the 4-configuration solver in addition to a set
of spurious solutions corresponding to some

∑3
k=1(−1)kM

(i)
3,kαi,k vanishing.

6.3.4 Creating the Solvers

We used the automatic generator from Larsson et al. [48] to make the polynomial solvers for
the three input configurations: 222, 32, and 4. The directly-encoded-scale solver corresponding
to each input configuration is denoted HDES

222 lλ, HDES
32 lλ, and HDES

4 lλ, respectively. The resulting
elimination templates were of sizes 101 × 155 (54 solutions), 107 × 152 (45 solutions), and
115× 151 (36 solutions). The equations have coefficients of very different magnitude. E.g., the
center-subtracted image coordinates have magnitude x̃i, ỹi ≈ 103, and thus the distance to the
image center x̃2

i + ỹ2
i is≈ 106. To improve numerical conditioning, we re-scaled both the image

coordinates and the squared distances by their average magnitudes. Note that this corresponds
to a simple re-scaling of the variables in (λ, l1, l2), which is inverted once the solutions are
obtained.

Experiments on synthetic data (see Section 6.6.1) revealed that using the standard GRevLex
bases in the generator of [48] gave solvers with poor numerical stability. To generate stable
solvers, we used the basis sampling technique proposed by Larsson et al. [54]. In [54] the
authors propose a method for randomly sampling feasible monomial bases, which can be used
to construct polynomial solvers. We generated (with [48]) 1,000 solvers with different monomial
bases for each of the three variants using the heuristic from [54]. Following the method from
Kuang et al. [41], the sampled solvers were evaluated on a test set of 1,000 synthetic instances,
and the solvers with the smallest median equation residual were kept. The resulting solvers have
slightly larger elimination templates (133 × 187, 154 × 199, and 115 × 151); however, they
are significantly more stable. See Section 6.6.1 for a comparison between the solvers using the
sampled bases and the standard GRevLex bases (default in [48]).

6.3.5 The Fixed Lens Distortion Variant

Finally, we consider the case of known division-model parameter λ. Fixing λ in (6.3) yields
degree 3 constraints in only 2 unknowns l1 and l2. Thus only 2 correspondences of 2 repeated
affine-covariant regions are needed. The generator of [48] found a stable solver (denoted HDES

22 l)
with an elimination template of size 12 × 21, which has 9 solutions. Basis sampling was not
required in this case. There is a second minimal problem for 3 repeated affine-covariant regions;
however, unlike the case of unknown distortion, this minimal problem is equivalent to the H22
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variant. It also has 9 solutions and can be solved with the HDES
222 lλ solver by duplicating a re-

gion in the input. The proposed HDES
22 l solver contrasts to the solvers from [71, 20, 14] in that

it is generated from constraints directly induced by the rectifying homography rather than its
linearization.

6.3.6 Degeneracies

We observed three important degeneracies for the DES solvers. First, if the vanishing line passes
through the image origin, i.e. l =

(
l1, l2, 0

)>, then the radial term in the homogeneous coordi-
nate of (2.36) is canceled. In this case, it is not possible to recover the radial distortion using
the equations in (6.3). However, the degeneracy does not arise from the problem formulation.
An affine transform can be applied to the undistorted image such that the vanishing line l in the
affine-transformed space has l3 6= 0. As future work, we will investigate how to remove this
degeneracy from the solvers.

Secondly, the problem degenerates if the scene plane is already fronto-parallel to the camera
and the corresponding points from the affine-covariant regions fall on circles centered at the
image center. Since the corresponding points have the same radii, they will undergo the same
scaling due to radial distortion (see (2.35)). In this case, the radial distortion parameter again
becomes unobservable since it is impossible to disambiguate the scale of the features from the
scaling of the lens distortion.

Third, suppose that (i) H is a rectifying homography other than the identity matrix, (ii) that the
image has no radial distortion, (iii) and that all corresponding points from repeated affine-covari-
ant regions fall on a single circle centered at the image center. As in the second case, applying
the division model (see Section 2.11) uniformly scales the points about the image center. Given
λ 6= 0, for a transformation by f(·, λ) defined in (2.35) of the points lying on the circle there is
a scaling matrix S(λ) = diag(1/λ, 1/λ, 1) that maps the points back to their original positions.
Thus there is a 1D family of rectifying homographies given by HS(λ) for the corresponding set
of undistorted images given by f(·, λ).

6.3.7 Reflections

In the derivation of (6.3), the rectified scales si were eliminated with the assumption that they
had equal signs (see Sec. 6.3.4). Reflections will have oppositely signed rectified scales; how-
ever, reversing the orientation of left-handed affine frames in a simple pre-processing step that
admits the use of reflections. Suppose that det

([
x̃i,1 x̃i,2 x̃i,3

])
< 0, where (x̃i,1, x̃i,2, x̃i,3) is a

distorted left-handed point parameterization of an affine-covariant region. Then reordering the
point parameterization as (x̃i,3, x̃i,2, x̃i,1) results in a right-handed point-parameterization such
that det

([
x̃i,3 x̃i,2 x̃i,1

])
> 0, and the scales of corresponded rectified reflections will be equal.

6.4 The Change-of-Scale (CS) Solvers

The proposed change-of-scale (CS) solvers use the Jacobian determinant of the rectifying trans-
formation to induce local constraints on the imaged vanishing line and the unknown parameter
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6.4 The Change-of-Scale (CS) Solvers

Figure 6.5: Change-of-Scale Solver Results. The input images are on the first and third rows and
show the distorted image of the vanishing line in orange and the dense change of
scale (see Section 6.4.5) in the parula color map that is alpha blended on the scene
plane. Purple corresponds to the smallest relative scale change due to the imaging of
the scene plane and yellow to the largest with respect to a chosen reference point on
the plane. The second and fourth rows contain the rectified results from the HCS

222lλ
change-of-scale solver (see Section 6.4).

for the division model of radial lens distortion (see Section 2.11). In particular, the derivation
uses the fact that the unknown division model parameter is encoded exclusively in the third
coordinate (see (2.35)), which results in a formulation that is tractable for automatic solver gen-
erators.
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In fact, there are several related works that linearize the homography and impose constraints
on the Jacobian determinant [6, 14, 71, 38, 39]; however, the proposed CS solvers are the first
solvers to incorporate lens distortion with this approach. The Jacobian determinant gives the
change of scale of a function at a point, which motivates the name Change of Scale (CS) for the
solvers proposed in this section. It is a surprising discovery that the combined effects of severe
lens distortion and perspective imaging from oblique views can be linearized over regions with
scales that are typical for covariant region detections (see Figure 6.5), which measure the relative
scale change between coplanar repeats due to imaging. In fact, the change-of-scale solvers are
used to rectify near fisheye distortions effectively (see Figure 6.5).

The CS solvers have the advantage over the DES solvers in that they admit strictly scale-
covariant regions detections, whereas the DES solvers require affine-covariant region detections.
As with the DES solvers in Section 6.3.4, the solvers restore the affine invariant that coplanar
repeated regions have the same scale.

6.4.1 The Change-of-Scale Formulation

The Euclidean coordinates (xi, yi)
> of the rectified point xi = αi

(
xi, yi, 1

)>
= Hf(x̃i, λ) (refer

to (2.36)), of any imaged point x̃i = (x̃i, ỹi, 1)> on the scene plane is given by the vector-valued
nonlinear function

x(x̃, ỹ) =
(
x(x̃, ỹ), y(x̃, ỹ)

)>
=
(

x̃
l>f(x̃,λ)

, ỹ
l>f(x̃,λ)

)>
.

The function x , which returns the inhomogeneous coordinates of the undistorted and rectified
point

(
x, y

)
, can be linearized at (x̃, ỹ) with the first-order Taylor expansion,

x(x̃+ δx̃, ỹ + δỹ) = x(x̃, ỹ) + Jx (l, λ)|(x̃,ỹ) ·
(
δx̃, δỹ

)>
.

The Jacobian determinant det
(
Jx (l, λ)|(x̃i,ỹi)

)
gives the approximate change of scale of the

rectifying and undistorting function x near the point (x̃, ỹ)>. Let s̃i be the scale of an image
region R̃i with its centroid at

(
x̃i, ỹi

)>, where the preimage Ri of R̃i is on some scene plane
Π. Let si be the rectified scale of Ri. Then the unknown rectified scale si can be expressed in
terms of the distorted scale s̃i and the Jacobian determinant as

si = s̃i · det
(
Jx (l, λ)|(x̃i,ỹi)

)
=

−s̃i(λ(x̃2
i + ỹ2

i )− 1)

(λ(x̃2
i + ỹ2

i ) + l1x̃i + l2ỹi + 1)3
. (6.5)

6.4.2 Eliminating the Rectified Scale

The equation for the rectified scale given in (6.5) defines the unknown geometric quantities:
(i) division-model parameter λ, (ii) scene-plane vanishing line l =

(
l1, l2, l3

)>, (iii) and the
rectified scale si of the rectified image region Ri. The distorted scale s̃i of imaged region R̃i
is measured by some scale-covariant region detector, e.g., the SIFT or Hessian Affine detector
[60, 65]. Let R̃i and R̃j be detected repeated coplanar regions. Then the scales of their rectified
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6.4 The Change-of-Scale (CS) Solvers

preimagesRi andRj are equal, namely si = sj . A unique solution is defined by restricting the
vanishing line to the affine subspace l3 = 1, which results in degree 4 constraints. The alternative
of fixing the rectified scale si is rejected since it results in higher degree constraints. Thus, the
unknown rectified scales of a group of n co-planar repeats s1, s2, . . . , sn can be eliminated in
pairs (see (6.6)), which gives n − 1 algebraically independent constraints and

(
n
2

)
polynomial

equations that are obtained by cross multiplying the denominators of the rational equations si =
sj .

6.4.3 Creating the solver

After eliminating the rectified scales 3 unknowns remain, namely l =
(
l1, l2, 1

)> and λ, so
3 equations are needed. The minimal configurations are the same as the DES solvers and an
analogous naming scheme is adopted for the CS solvers. The CS solvers can be obtained from 3
correspondences of 2 coplanar repeats, denoted HCS

222lλ, 1 corresponded set of 3 and 1 correspon-
dence of 2 coplanar repeats, denoted HCS

32 lλ, or 1 corresponded set of 4 coplanar repeats, denoted
HCS

4 lλ (see the comparison in Table 6.2). The system of equations contains rational expressions
of the form

s̃i · det
(
Jx (l, λ)|(x̃i,ỹi)

)
= s̃j · det

(
Jx (l, λ)|(x̃j ,ỹj)

)
. (6.6)

After multiplying equations (6.6) by common denominators we obtain a system of three quar-
tic polynomial equations in three unknowns, namely l1, l2 and λ. Again we used the automatic
generator from Larsson et al. [48] to create the polynomial solvers for all of the minimal config-
urations. The structure of the change-of-scale solvers turned out to be similar to the DES solvers
(i.e., same monomials and number of solutions, but the coefficients in equations are computed
differently).

6.4.4 Degeneracies

The change-of-scale solvers suffer from the same degeneracies that are listed in Section 6.3.6
for the DES solvers. There are likely different degeneracies between the two families of solvers,
but an exhaustive analysis is difficult.

6.4.5 Dense Change of Scale Due to Imaging

Up to a global scale ambiguity, the rectified scale s of an imaged scene plane region can be
approximated with (6.5). The projective and radial lens distortion components of the imag-
ing transformation are linearized in (6.5), so the approximation of the rectified scale s is more
accurate for smaller regions.

The combined change-of-scale effects of lens distortion and perspective warping due to the
imaging of a scene plane can be seen in Figure 6.5. The reference point is the image of the
centroid of the convex hull of rectified coplanar covariant regions. The dense relative change
of scale is rendered by the alpha-blended parula colormap in the original images of Figure 6.5.
Regions with larger scale change due to imaging are orange; regions close to the scale change of
the imaged reference point are blue, and regions with vanishing relative scale change are purple.
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The purple regions will be expanded in the rectified image and the yellow regions shrunk such
that the affine rectification restores the affine invariant that coplanar regions whose preimages
are of equal scale are the same scale in the rectified image.

For pinhole cameras, regions undergoing an equal change of scale from imaging are projected
to isolines [20]. However, as seen in Figure 6.5, for radially-distorted cameras parameterized by
the division model (see Section 2.11), regions undergoing equal change of scale from imaging
are constrained to circles. This is consistent with the fact that scene lines are imaged as circles
under the division model of radial lens distortion [10, 26, 86, 92]. The distorted image of the
vanishing line as a circle under the division model is shown in a synthetic scene of Figure 6.2
and in real images in Figures 6.5 and 6.14 (the orange circular segments).

The dense relative change of scale is useful for automatic rectification. E.g., in images where
the image of the vanishing line intersects the image extents, regions approaching the vanishing
line rectify to arbitrarily large scales. Thus a bound on the rectified scale is needed to prevent
the rectified image from blowing up. Using (6.5), an image can be masked such that any masked
point has a relative change of scale bounded by some user threshold, which can be used to gen-
erate reasonably sized rectifications. All images in this document were automatically generated
with this method.

6.5 Robust Estimation

The solvers are used in a LO-RANSAC-based robust-estimation framework [15]. Affine recti-
fications and undistortions are jointly hypothesized by one of the proposed solvers. A metric
upgrade is attempted, and models with maximal consensus sets are locally optimized by an ex-
tension of the method introduced in [74]. The metric-rectifications are presented in the results.

6.5.1 Local Features and Descriptors

We use the Maximally-Stable Extremal Region and Hessian-Affine detectors as detailed in Sec-
tions 3.2.4 and 3.2.6 [62, 65]. The affine-covariant regions are given by an affine transform (see
Section 6.3.1), equivalently 3 distinct points, which defines an affine frame in the image space
[69]. The image patch local to the affine frame is embedded into a descriptor vector by the
RootSIFT transform [4, 60] (see Section 3.3.1).

6.5.2 Appearance Clustering and Sampling

Affine frames are tentatively labeled as repeated texture by their appearance. The RootSIFT
descriptors are agglomeratively clustered, and the pair-wise tentative correspondences are estab-
lished among connected components as detailed in Section 3.3.2.

Sample configurations for the proposed minimal solvers are illustrated in Figure 6.4 and de-
tailed in Section 6.3.3. To recap, the solver variants for the proposed undistorting and rectifying
minimal solvers—either from the DES or CS family—are 3 correspondences of 2 covariant re-
gions (the 222-solvers), a corresponded set of 3 covariant regions and a correspondence of 2
covariant regions (the 32-solvers), and a corresponded set of 4 covariant regions (the 4-solvers).
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Figure 6.6: Stability Study for Noiseless Features. The equation residuals (deviation from 0)
for the particular polynomial system of equations solved by each of the DES and CS
solvers is used to measure solver stability (see Sections 6.3.2 and 6.4.2, respectively)
. The minimal solution closest to the ground truth is evaluated and reported for 1000
noiseless synthetic scenes. The basis selection method of [54] is essential for stable
solver generation.

For each RANSAC trial, appearance clusters are selected with the probability given by its relative
size to the other appearance clusters, and the required number of correspondences or corre-
sponded sets are drawn from the selected clusters.

6.5.3 Metric Upgrade and Local Optimization

The affine-covariant regions that are members of the minimal sample are affine rectified by each
feasible model returned by the solver; typically there is only 1 (see Figure 6.9). A metric up-
grade is estimated from the affine-rectified minimal sample set using the linear solver introduced
in [74]. Then all affine-covariant regions are metrically-upgraded using the estimate. The con-
sensus set is measured in the metric-rectified space by verifying the congruence of the basis
vectors of the corresponded affine frames. Congruence is an invariant of metric-rectified space
and is a stronger constraint than the equal-scale invariant of affine-rectified space that was used
to derive the proposed solvers. The metric upgrade essentially comes for free by inputting the
affine-covariant regions sampled for the proposed solvers to the linear metric-upgrade solver
proposed in [74]. By using the metric-upgrade, the verification step of RANSAC can enforce
the congruence of corresponding affine-covariant region extents (equivalently, the lengths of the
linear basis vectors) to estimate an accurate consensus set. Models with the maximal consensus
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Figure 6.7: Warp Errors for Fixed 1-σ Pixel Noise. Reports the cumulative distributions of raw
warp errors ∆warp (see Section 2.12) for the bench of solvers on 1000 synthetic
scenes with 1-σ pixel of imaging white noise added. The proposed solvers (with
undistortion estimation) give significantly better proposals than the state of the art.

set are locally optimized in a method similar to [74].

6.6 Experiments

The stabilities and noise sensitivities of the proposed solvers are evaluated on synthetic data. We
compare the proposed solvers to a bench of 4 state-of-the-art solvers (see Table 6.2). We apply
the denotations for the solvers introduced in Section 6.3.3 to all the solvers in the benchmark;
e.g., a solver requiring 2 correspondences of 2 affine-covariant regions will be prefixed by H22,
while the proposed solver requiring 1 corresponded set of 4 affine-covariant regions is prefixed
by H4.

Included are two state-of-the-art single-view solvers for radially-distorted conjugate trans-
lations, denoted H2l and H22l(see Chapter 5); a full-homography and radial distortion solver,
denoted H22λ [26]; and the change-of-scale solver for affine rectification of [14], denoted HCS

22 l.
The sensitivity benchmarks measure the performance of rectification accuracy by the warp

error (see Section 2.12) and the relative error of the division parameter estimate. Stability is
measured by the equation residuals of the solution that is closest to ground truth. The H22λ
solver is omitted from the warp error since the vanishing line is not estimated, and the HCS

22 l and
HDES

22 l solvers are omitted from benchmarks involving lens distortion since the solvers assume a
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pinhole camera.

6.6.1 Synthetic Data

The performance of the proposed solvers on 1000 synthetic images of 3D scenes with known
ground-truth parameters is evaluated. A camera with a random but realistic focal length is ran-
domly placed with respect to a scene plane such that it is mostly in the camera’s field-of-view.
The image resolution is set to 1000x1000 pixels. The noise sensitivity of the solvers are eval-
uated both on conjugately-translated and rigidly-transformed coplanar repeats (see Figure 6.8).
Scenes with conjugately-translated coplanar repeats are evaluated so that the proposed solvers
can be compared to state-of-the-art solvers proposed in Chapter 5. For either motion type, affine
frames are generated on the scene plane such that their scale with respect to the scene plane is
realistic. The modeling choice reflects the use of affine-covariant region detectors on real images
(see Section 6.3.1).

The image is distorted according to the division model. For the sensitivity experiments,
isotropic white noise is added to the distorted affine frames at increasing levels. Performance is
characterized by the relative error of the estimated distortion parameter and by the warp error,
which measures the accuracy of the affine-rectification.

Numerical Stability

The stability study of Figure 6.6 compares compares the solver variants generated using the
standard GRevLex bases versus solvers generated using the basis selection method of [54] (also
see Section 6.3.4). The generator of Larsson et al. [48] was used to generate both sets of solvers.
Stability is measured as the equation residual (equivalently, deviation from 0) of the polynomial
system of equations associated with each solver (see Sections 6.3.2 and 6.4.2) for the solution
that is closest to ground truth for noiseless affine-frame correspondences across realistic syn-
thetic scenes, which are generated as described in the introduction of Section 6.6.1.

The normalized ground-truth parameter of the division model λ is set to -4, a value typical for
wide field-of-view cameras like the GoPro, where the image is normalized by 1/(width + height).
Figure 6.6 reports the histogram of log10 equation residuals and shows that the basis selection
method of [54] significantly improves the stability of the generated solvers. The basis-sampled
solvers are used for the remainder of the experiments.

Noise Sensitivity

The proposed and state-of-the-art solvers are tested with increasing levels of white noise added
to the point parameterizations (see Section 6.3.1) of the affine-covariant region correspondences
that are either translated or rigidly-transformed on the scene plane (see Figure 6.8). The amount
of white noise is given by the standard deviation of a zero-mean isotropic Gaussian distribution,
and the solvers are tested at noise levels of σ ∈ { 0.1, 0.5, 1, 2, 5 }. The ground-truth normal-
ized division model parameter is set to λ = −4, which is typical for GoPro-type imagery in
normalized image coordinates.
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(a) Radially-Distorted Conjugately-Translated Coplanar Repeats
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(b) Radially-Distorted Rigidly-Transformed Coplanar Repeats
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Figure 6.8: Sensitivity Benchmark. Comparison of two error measures after 25 iterations of a
simple RANSAC for different solvers with increasing levels of white noise added to
the affine frame correspondences, where the normalized division model parameter is
set to -4 (see Section 2.11), which is similar to the distortion of a GoPro Hero 4. (top
row) Shows results for translated coplanar repeats, and (bottom row) shows results
for rigidly-transformed coplanar repeats. (left column) Reports the root mean square
warp error ∆warp

RMS, and (right column) reports the relative error of the estimated di-
vision model parameter. The proposed solvers are significantly more robust for both
types of repeats on both error measures.

The cumulative distributions of warp errors in Figure 6.7 show that for 1-pixel white noise
on conjugately-translated affine frames, the proposed solvers—HDES

222 lλ, HDES
32 lλ, HDES

4 lλ,HCS
222lλ,

HCS
32 lλ and HCS

4 lλ—give significantly more accurate estimates than the state-of-the-art conjugate
translation solvers proposed in Chapter 5. Interestingly, all of the proposed undistorting variants
from both the DES and CS families of rectifying solvers have nearly identical performance.

If 5 pixel RMS warp error is fixed as a threshold for a good model proposal, then 30% of the
models given by the proposed solvers are good versus roughly 10% for the solvers of Chapter 5.
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Figure 6.9: Real and Feasible Solutions. 1. The histograms of the number of real solutions
returned by the proposed solvers. 2. Typically, only 1 solution is feasible. Feasibility
is determined by checking that the division model parameter falls in a reasonable
interval. The frequencies were calculated on results from 150,000 trials on different
scenes with varying levels of imaged white-noise.

The proposed HDES
22 l solver and the HCS

22 l of [14] each give biased proposals since they cannot
estimate lens distortion.

The solvers are wrapped by a basic RANSAC estimator that minimizes the RMS warp error
∆warp

RMS over 25 minimal samples of affine frames for each of the conjugately-translated and
rigidly-transformed coplanar repeat sensitivity studies in Figure 6.8. The RANSAC estimates
are summarized in boxplots for 1000 synthetic scenes. The interquartile range is contained
within the extents of a box, and the median is the horizontal line dividing the box. As shown in
Figure 6.8, the proposed solvers — HDES

222 lλ, HDES
32 lλ, HDES

4 lλ,HCS
222lλ, HCS

32 lλ and HCS
4 lλ— again

give the most accurate lens distortion and rectification estimates. In fact, the proposed solvers
are superior to the state of the art at all noise levels. The proposed distortion-estimating solvers
give solutions with less than 5-pixel RMS warp error ∆warp

RMS 75% of the time and estimate the
correct division model parameter more than half the time at the 2-pixel noise level. The proposed
fixed-lens distortion solver HDES

22 l and the HCS
22 l of [14] give biased solutions since they assume

the pinhole camera model. The vanishing line is not directly estimated by the solver H22λ of
[26], so it is not reported.

Feasible Solutions and Runtime

This study shows the number of real and feasible solutions given by the proposed solvers for
150000 trials across 1000 scenes at varying noise levels with a fixed normalized division model
parameter of λ = −4. Figure 6.9 (left) shows the number of real solutions, and Figure 6.9
(right) shows the subset of feasible solutions as defined by the estimated normalized division-
model parameter solution falling in the interval [−8, 0.5]. All solutions are considered feasible

99



6 Minimal Solvers for Rectifying from Radially-Distorted Scales and Change of Scales

-5 -4 -3 -2 -1 0
0

5

10

15

20

Normalized Divsion Model Parameter λ

∆
w
a
rp

R
M
S

[p
ix

el
s]

HDES
22 l | λ = −4 HDES

22 l | λ = −2 HDES
22 l | λ = 0 HDES

222 lλ

Figure 6.10: Distortion Study. Reports the root-mean-square warp error ∆warp
RMS (see Sec-

tion 2.12) for 1000 synthetic scenes imaged by cameras with varying normalized
division model parameter with 1-σ pixel white noise. Solvers HDES

22 l | λ = −4,
HDES

22 l | λ = −2, and HDES
22 l | λ = 0 rectify the pinhole image that is undistorted

with the given fixed division model parameter. The HDES
222 lλ solver is competitive

even for the case where the fixed division model parameter matches ground truth
and gives stable performance across all distortion levels.

for the HDES
22 l solver. Figure 6.9 (right) shows that in 97% of the scenes only 1 solution is feasible,

which means that nearly all incorrect solutions can be quickly discarded.
The runtimes of the DES family of solvers are reported. The MATLAB implementation of the

solvers on a standard desktop are 2 ms for HDES
222 lλ, 2.2 ms for HDES

32 lλ, 1.7 ms for HDES
4 lλ, and

0.2 ms for HDES
22 l. Due to the similar structure in the equations, the CS solvers have comparable

performance.

6.6.2 Distortion Study

The distortion study evaluates the accuracy of rectifications as measured by the warp error (see
Section 2.12) over a normalized ground truth division model parameter from
λ ∈ {−5,−4,−3,−2,−1, 0 }, which are values that are characteristic of near-fisheye to pinhole
lenses (see Section 2.11). The images have fixed 1px-σ white noise added. The methodology of
scene generation is the same as detailed in Section 6.6.1.

Since the sensitivity experiments of Section 6.6.1 show that the performance of the proposed
solvers is essentially the same with respect to noise, we choose HDES

222 lλ as their representative.
It is evaluated against 3 solvers—HDES

22 l | λ = −4, HDES
22 l | λ = −2, and HDES

22 l | λ = 0—
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[narrow] [medium] [wide] [fisheye]

Figure 6.11: Field-of-View Study. The proposed solver HDES
222 lλ gives accurate rectifications

across all fields-of-view: (left-to-right) Nikon D60, GoPro Hero 4 at the medium-
and wide-FOV settings, and a Panasonic DMC-GM5 with a Samyang 7.5mm fish-
eye lens. The outputs are the undistorted (middle row) and rectified images (bottom
row).

each of which undistort at a different fixed normalized division model parameter, namely λ ∈
{−4,−2, 0 }, respectively. The fixed distortion solvers estimate the affine rectification with the
proposed HDES

22 l (see Section 6.3.5) using the undistorted minimal sample, which is computed
with the given fixed division model parameter of the solver.

Figure 6.10 shows that even for the case where the fixed division model parameter of the
solver is equivalent to the ground truth, the best solutions of the proposed HDES

222 lλ are equivalent
to rectifying with known ground truth. Furthermore, the HDES

222 lλ is stable, giving the same perfor-
mance at a fixed noise level across all ground truth division model parameters. As expected, the
warp error quickly increases for the HDES

22 l | λ = −4, HDES
22 l | λ = −2, and HDES

22 l | λ = 0 solvers
as the ground truth division model parameter differs from the fixed division model parameter.

6.6.3 Real Images

The field-of-view experiment of Figure 6.11 evaluates the proposed HDES
222 lλ solver on real images

taken with narrow, medium, wide-angle, and fish-eye lenses. Images with diverse scene content
were chosen. Figure 6.11 shows that the HDES

222 lλ gives accurate rectifications for all lens types.
Additional results for wide-angle and fisheye lenses are included in Figure 6.14 in the end of
this chapter.
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[H22l+ LO] [HCS
22 l + LO] [HDES

22 l + LO] [HDES
222 lλ + LO]

Figure 6.12: Solver Comparison. The state-of-the art solvers H22l(see Chapter 5) and HCS
22 l [14]

are compared with the proposed solvers HDES
222 lλ and HDES

22 l on images containing
either translated or rigidly-transformed coplanar repeated patterns with increasing
amounts of lens distortion. (top) small distortion, rigidly-transformed; (middle)
medium distortion, translated; (bottom) large distortion, rigidly-transformed. Ac-
curate rectifications for all images are only given by the proposed HDES

222 lλ.

Figure 6.12 compares the proposed HDES
222 lλ and HDES

22 l solvers to the state-of-the-art solvers on
images with increasing levels of radial lens distortion (top to bottom) that contain either trans-
lated or rigidly-transformed coplanar repeated patterns. Only the proposed HDES

222 lλ accurately
rectifies on both pattern types and at all levels of distortion. The results are after a local op-
timization and demonstrate that the method of Pritts et al. [74] is unable to accurately rectify
without a good initial guess at the lens distortion. The proposed fixed-distortion solver HDES

22 l
gave a better rectification than the change-of-scale solver HCS

22 l of Chum et al. [14].
Figure 6.13 shows the rectifications of a deceiving picture of a landmark taken by wide-angle

and fisheye lenses. From the wide-angle image, it is not obvious which lines are really straight
in the scene making undistortion with the plumb-line constraint difficult.

6.7 Discussion

This chapter proposes two groups of solvers (DES and CS) that extend affine-rectification to
radially-distorted images that contain essentially arbitrarily repeating coplanar patterns. Both
solver groups use the invariant that imaged coplanar repeats have the same scale if rectified.
Despite using the equal scale invariant of rectified coplanar repeats in different ways to impose
constraints on the undistortion and rectification parameters, the generated solvers have identical
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Figure 6.13: Straight Lines Don’t Have to be Straight. (left pair) It is difficult to disentangle
the effects of radial lens distortion from the projections of curvilinear forms in the
image. E.g., the waterfront, fence and compass tile mosaic are circles, which violate
the plumb-line assumption and cannot be used for undistortion or rectification [22].
However, the imaged rigidly-transformed coplanar repeats can be used to rectify
this image with the solvers proposed in this chapter. (right pair) Note that the
distortion center is clearly decentered in the third image, but a good rectification is
still achieved for the fisheye image.

structure and similar stability and robustness to imaging noise. This was a surprising finding
since the CS solvers linearize the undistorting and rectifying transformation to generate the con-
straint equations. Given the results for the CS solvers on synthetic benchmarks and challenging
images, it can be concluded that the first-order approximation of the rectifying transformation
is sufficient to handle the effect of severe lens distortion of an obliquely imaged scene plane.
Equivalently, the linearization is reasonable over a measurement region that is typical for an
affine-covariant region detection.

Synthetic experiments show that both groups of proposed solvers are more robust to noise
with respect to the state of the art, give stable estimates across a wide range of distortions, and
are applicable to a broader set of image content. The paper also demonstrates that robust solvers
can be generated with the basis selection method of [54] by maximizing for numerical stabil-
ity. We expect basis selection to become a standard procedure for improving solver stability.
Experiments on difficult images with large radial distortions confirm that the solvers give high-
accuracy rectifications if used inside a robust estimator. By jointly estimating rectification and
radial distortion, the proposed minimal solvers eliminate the need for sampling lens distortion
parameters in RANSAC.

In future work, we will attempt to remove the degeneracies from the solvers unrelated to the
problem formulation. Another future direction, similar to the recent work of [12], is to generate a
set of hybrid solvers by combining constraint equations from the DES and CS and the conjugate
translation solvers proposed in Chapter 5. The constraint equations for the DES and CS solvers
may be sensitive to different properties of the inputted covariant regions, such as their size,
shape and relative orientation. During sampling, the most robust solver given the properties of
the minimal sample (as listed above) can be chosen to hypothesize the model.
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Figure 6.14: Wide-angle and fisheye results. Input images (left) with the estimated distorted van-
ishing line (orange), undistorted (middle) and rectified (right). Results are produced
with the proposed HDES

222 lλ solver.
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7 Coplanar Repeats by Energy
Minimization

This chapter proposes an automated method to detect, group and rectify arbitrarily arranged
coplanar repeated elements via energy minimization. The proposed energy functional combines
several features that model how planes with coplanar repeats are projected into images and
captures global interactions between different coplanar repeat groups and scene planes. An
inference framework based on a recent variant of α-expansion is described and fast convergence
is demonstrated. We compare the proposed method to two widely-used geometric multi-model
fitting methods using a new dataset of annotated images containing multiple scene planes with
coplanar repeats in varied arrangements. The evaluation shows a significant improvement in the
accuracy of rectifications computed from coplanar repeats detected with the proposed method
versus those detected with the baseline methods.

7.1 Introduction

Most state-of-the-art repeat detection and modeling methods take a greedy approach that follows
appearance-based clustering of extracted local affine frames (LAFs) with geometric verification.
Greedy methods have a common drawback: Sooner or later the wrong choice will be made in
a sequence of threshold tests resulting in an irrevocable error, which makes a pipeline approach
too fragile for use on large image databases.

We propose a global energy model for grouping coplanar repeats and scene plane detection.
The energy functional combines features encouraging: (i) the geometric and appearance consis-
tency of coplanar repeated elements, (ii) the spatial and color cohesion of detected scene planes,
(iii) and a parsimonious model description of coplanar repeat groups and scene planes. The
energy is minimized by block-coordinate descent, which alternates between grouping extracted
LAFs into coplanar repeats by labeling (see Figures 7.1 and 7.3) and regresses the continuous
parameters that model the geometries and appearances of coplanar repeat groups and their un-
derlying scene planes. Inference is fast even for larger problems (see Section 7.6).

Comparison to state-of-the-art coplanar repeat detection methods is complicated by the fact
that many prior methods were either evaluated on small datasets, include only qualitative results,
or were restricted to images with repeats having a particular symmetry. We evaluate the proposed
method on a new annotated dataset of 113 images. The images have from one to five scene planes
containing translation, reflection, or rotation symmetries that repeat periodically or arbitrarily.
Performance is measured by comparing the quality of rectifications computed from detected
coplanar repeat groups versus rectifications computed from the annotated coplanar repeat groups
of the dataset.
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7 Coplanar Repeats by Energy Minimization

(a) (b) (c) (d) (e)

Figure 7.1: Grouping and Rectification of Coplanar Repeats. (a) A subset of the detected copla-
nar repeats is denoted by colored dots. (b) Rectification of the most distant LAF
pairs grouped as coplanar repeats—repeat group membership is encoded by the col-
ored border. (c,d) Rectified and segmented scene planes. (e) Translation and rotation
symmetric local affine frames labeled as distinct coplanar repeats.

7.2 Related Work

Two frequently cited approaches use energy minimization frameworks. Park et al. [73] mini-
mize an energy that measures the compatibility of a deformable lattice to imaged uniform grids
of repetitions. Wu et al. [97] refine vanishing point estimates of an imaged building facade
by minimizing the difference between detected symmetries across repetition boundaries of the
facade.

None of the reviewed approaches globally model repeats; rather, there is an assumption that
a dominant plane is present, or repeat grouping proceeds greedily by detecting scene planes
sequentially. A significant subset of the reviewed literature requires the presence of special
scene structure like parallel scene lines or lattices, which limits their applicability.

7.3 Scene Model

The scene model has three types of outputs. The first output is a grouping of detected local affine
frames (see Figure 7.3) into coplanar repeats (see Figures 7.1). Random variables Y K jointly
assign local affine frames to LAF groups with mutually compatible geometry and appearance
and to planar surfaces. Each random variable of Y K is from the set YK = { 1 . . . NG, ∅ } ×
{ 1 . . . NV , b }. Here NG is the number of clusters of local affine frames that were grouped
based on their similarity in appearance, and NV is the estimated number of planar surfaces in
the scene (see Table 7.1). A particular labeling of Y K is denoted yK . The assignment of the i-th
local affine frame to a compatible LAF cluster is indexed as yKig , and its assignment to a scene
plane is indexed as yKiv . The empty set ∅ is assigned if the local affine frame i does not repeat,
yKig = ∅, and the token b is assigned to a local affine frame if it does not lie on a planar surface.
Background local affine frames cannot be assigned to a repeat group, so they are assigned the
ordered pair (∅, b ). The non-planar surfaces are collectively called the background. The sets of
local affine frames assigned to the same LAF cluster and scene plane are the coplanar repeated
patterns.
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7.3 Scene Model

Term Description Term Description

xKi local affine frame (LAF), see Figure 7.3 ∅ LAF is a singleton

xKiw point of a LAF NG number of LAF clusters

xRj image region, see Figure 7.3 NV number of scene planes

yKig LAF↔ cluster βK(yK) geom./app. parameters for repeats

yKiv LAF↔ scene plane
βR(yK ,yR)

geom./app. parameters for planes

yKi LAF label, (yKig ,y
K
iv), see Figure 7.1 β(y) joint parameter vector

yRj region↔ scene plane, see Figure 7.1 ψ(·) joint feature vector

y joint labeling ln scene plane vanishing line

b LAF/region is on background Hln (·) rectifying transform from ln

Table 7.1: Common Scene Model Denotations.

The second output is a labeling of image regions as planar surfaces and background. The
image regions are small and connected areas of similar color that are detected as SEEDS su-
perpixels [90] (see Figure 7.3). Random variables Y R assign image regions to planar surfaces
and the background, where each random variable of Y R is from the set YR = { 1 . . . NV , b }.
As before, Nv and b are the estimated number of planar surfaces and the background token,
respectively. A particular labeling of Y R is denoted yR, and the labeling partitions the image
regions into larger components that correspond to contiguous planar surfaces of the scene or
background. The assignment of the j-th region to a scene plane or to background is indexed as
yRj .

The third output is a set of continuous random variables modeling the geometries and ap-
pearances of the sets of coplanar repeats and the scene planes. The geometries and appearances
of coplanar repeats are functions of the local affine frame assignments and are given by the
dependent random variables BK(Y K). The corresponding parameter estimates are denoted as
βK(yK). The geometries and appearances of the scene planes are functions of Y K and Y R, and
are given by dependent random variables BR(Y K , Y R). The parameters βR(yK ,yR) represent
the colors of the scene surfaces and the orientations of scene planes.

The joint labeling and parameter vector for the entire model are respectively denoted y =
yK

_
yR and β(y) = βK(yK)_βR(yK ,yR).

xsy

7.3.1 Energy Function

The joint feature vector ψ(·) encodes potentials that measure: (i) coplanar repeats consist of
local affine frames that have similar appearance and the same area in the preimage, (ii) the
scene planes and background should consist of image regions with the same color distributions,
(iii) surfaces should be contiguous and that nearby repeated content should be on the same
surface, (iv) and scenes should have a parsimonious description.

A minimal energy labeling y and parameter set β(y) are sought by solving the energy mini-
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7 Coplanar Repeats by Energy Minimization

Figure 7.2: Factor Graph for Unaries and Pairwise terms. The energy function incorporates
(i) unaries for geometric and appearance consistency of coplanar repeats, (ii) pair-
wise terms for spatial and color cohesion of detected scene planes

mization task
argmin

y,β
w>ψ(x,y, β(y))︸ ︷︷ ︸

E (energy)

, (7.1)

where x are the detected salient image patches and over-segmented regions of the image, and w
is a weight vector. The components of w take on different meanings depending on their paired
features and are discussed in Sections 7.3.3 and 7.3.5. Figure 7.2 is a factor graph defining
the interactions of the unaries and pairwise energies in the energy function. It will be a useful
reference as the energy terms are defined.
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7.3 Scene Model

(a) (b) (c) (d) (e) (f)

Figure 7.3: Region Detection and Description. (a) Center of gravity (white cross) and cur-
vature extrema (orange circles) of a detected MSER (orange contour [62], see also
Section 3.2.4). Patches are normalized to a square and oriented to define an affine
frame as in [63], (b) Bases are reflected for detecting axial symmetries. The Root-
SIFT transform embeds the local texture [4, 60]. (c) Affine frames are mapped back
into image. (d) Over-segmentation by SEEDS superpixels. (e) The contrast feature
ψcontrast
T , where intensity is proportional to edge response along superpixel bound-

aries.

7.3.2 Measurements

Affine-covariant regions [62, 65, 69] are extracted from the image as good candidates for repre-
senting repeated content. (see Figures 7.3). The shapes of the detected patches are summarized
by local affine frames, or, equivalently, 3-tuples of points, and are given by measurements xK .
One type of local affine frame construction is illustrated in Figure 7.3 (left). The image is over-
segmented by SEEDS superpixels [90] to provide measurements on regions where local affine
frame detection is unlikely as illustrated in Figure 7.3 (right). The segmented regions are de-
noted by xR. The local affine frames and regions are concatenated to give the joint measurement
x = xK

_
xR, which is an argument to the energy defined in (7.1).

7.3.3 Unary Features for Repeats and Surfaces

The perspective skew of each scene plane πn is given by its vanishing line, which is an analog
to the horizon line for a scene plane at any orientation. Vanishing lines are encoded in the
parameters of the scene planes βR(yK ,yR). Explicitly they are the set { ln | ln ∈ P2 }NVn=1,
where NV is the number of scene planes and P2 is the real projective plane.

Scale of coplanar repeats. A coplanar repeat groupC is the set of local affine frames from
the same pattern that co-occur on a scene plane, namely C = {xKi | yKig = m ∧ yKiv = n },
where n 6= b. The local affine frames of C are called coplanar repeats. The coplanar repeats of
C are of equal scale (equiareal) if their perspective skew is removed, which is accomplished by
transforming the vanishing line of the underlying scene plane ln so that it is coincident with the
principal axis of the camera (see Chum et al. [14]). The scale feature ψscale measures the mutual
compatibility of coplanar repeats with the scale constraint. Let Hln(·) be a transformation that
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7 Coplanar Repeats by Energy Minimization

removes perspective skew from plane πn by orienting ln to the principal axis and s(·) be the
function that computes the scale of a local affine frame. Then the scale feature for the scene’s
coplanar repeats is

ψscale = −
NG∑
m=1

NV∑
n=1

∑
i

[yKig = m] · [yKiv = n] ·
(
log s(Hln(xKi ))− log s̄(n,yKig )

)2
, (7.2)

where s̄(n,yKig ) is the geometric mean of the local affine frames in pattern yKig rectified by
transformation Hln(·), which is part of the estimated parameters of the repeated scene content
encoded in βF (yK).

Appearance of patterns. The appearance of the image patches containing LAFs xK are
described by RootSIFT [4, 60]. The corresponding RootSIFT of a local affine frame is given
by the function r(·) (see Section 3.3.1). The appearance affinity of the local affine frame xKi
to a pattern is given by the normalized Euclidean distance between the RootSIFT descriptor of
the local affine frame and mean RootSIFT descriptor of the pattern. The appearance feature for
patterns is

ψapp =

NG∑
m=1

∑
i

[yKig = m] ·
‖r(xKi )− r̄(yKig )‖22

σ2
1

, (7.3)

where r̄(yKig ) is the mean of the RootSIFTs of the local affine frames in pattern yKig , which is
part of the estimated parameters of the repeated scene content encoded in βF (yK). The variance
σ2

1 is set empirically.

Color of scene surfaces. The color distribution of each scene surface is modeled with
a RGB Gaussian mixture model (GMM) with K components, γ = {µnk,Σnk, τnk, }, where
nk ∈ { 1 . . . NV , b } × { 1 . . .K } and µnk,Σnk, τnk are the mean RGB color, full color co-
variance and mixing weight for component k of surface v. The set of GMM parameters γ is
part of the estimated parameters of the appearance and geometry for scene planes encoded in
BR(Y K , Y R). The color feature for the scene surfaces is

ψcolor =
∑

n∈{1...NV ,b}

∑
j

∑
j′

[yRjv = n]

|xRj |
· min
k∈{1,...,K}

{
− log

(
pn(xRjj′ |k) · τnk

) }
︸ ︷︷ ︸

approximately ∝ − log pn(xR
jj′ )

, (7.4)

where xRjj′ is the j′-th member pixel of region xRj with |xRj | number of pixels and the condi-
tional likelihood of a pixel xRjj′ given a mixture component k is normally distributed, xRjj′ |k ∼
N (µnk,Σnk). The feature ψcolor uses the same approximation for the log-likelihood as Grabcut
[81] to make the maximum-likelihood estimation of GMM parameters faster. Connected com-
ponents of regions with the same surface assignment segment the image into contiguous planar
and background regions.
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7.3 Scene Model

Planar and background singletons. Singletons are local affine frames that do not repeat.
A weighted cost for each singleton is assessed, which is the maximum unary energy that can
be considered typical for a coplanar repeat. For a complete geometric parsing of the scene, it is
necessary to assign each singleton to its underlying scene plane or to the background surface.
Singletons induce no single-view geometric constraints nor appearance constraints because they
are not part of a repeat group, so their assignments to scene planes are based on their inter-
actions with neighboring local affine frames and regions, which are defined in Section 7.3.4 as
assignment regularization functions. An additional weighted cost for each planar singleton is as-
sessed, which is the minimum amount of required evidence obtained through interactions with
neighboring local affine frames and regions to consider a singleton planar.

7.3.4 Pairwise

The pairwise features are a set of bivariate Potts functions that serve as regularizers for local
affine frame and region assignment to scene model components.

Local affine frame contrast. The local affine frame contrast feature penalizes models that
over-segment similar looking repeats. The local affine frame contrast of the scene is

ψcontrast
F =

∑
i 6=i′

[yKiv 6= yKi′v] · exp

[
−‖r(xKi )− r(xKi′ )‖22

σ2
2

]
, (7.5)

where the variance σ2
2 is set empirically.

Region contrast. Regions have bounded area, so there may be large areas of low texture
on a scene plane or in the background that are over-segmented. Regions that span low-texture
areas can be identified by a low cumulative edge response along their boundary. The cumulative
edge response between two regions, denoted φ(xRj ,x

R
j′), is robustly calculated so that short but

extreme responses along the boundary do not dominate (see Figures 7.3). The region contrast of
the image is given by the feature

ψcontrast
R =

∑
j 6=j′

[yRjv 6= yRj′v] · exp

[
−
φ(xRj ,x

R
j′)

2

λ

]
. (7.6)

A larger constant λ increases the amount of smoothing and is set as λ = 2 · φ̄2, which puts the
crossover point of smoothing at the mean contrast of regions.

Local affine frame overlap. A local affine frame that overlaps a region is coplanar or co-
occurs on the background surface with the overlapped region, which is encoded as a pairwise
constraint. A penalty for each violation of the coplanarity constraint is assessed.
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7 Coplanar Repeats by Energy Minimization

7.3.5 Label subset costs

Parsimonious scene models are encouraged by assessing a cost for each scene model part. Equiv-
alence classes of the label set are defined by labels that share a scene model part, e.g., the set
of labels that have the same vanishing line. A label subset cost is assessed if at least one label
from an equivalence class is used, which is equivalent to accumulating a weighted count of the
number of unique scene model components in the scene.

7.4 Energy Minimization

The energy minimization task of (7.1) is solved by alternating between finding the best labeling y
and regressing the scene model components β in a block-coordinate descent loop until the energy
converges. Alternating between finding the minimal energy labeling and regressing continuous
model parameters has notably been used in segmentation and multi-model geometry estimation
by Rother et al. and Isack et al. [81, 35].

7.4.1 Labeling and Regression

The scene model parameters are fixed to the current estimate for the labeling problem, ŷ =
argminy E(x,y, β(y) = β̂). Finding the minimal-energy labeling is NP-hard [9]. An extension
to alpha-expansion by Delong et al. [9, 21, 37] that accommodates label subset costs (defined in
Section 7.3.5) is used to find an approximate solution.

The labeling is fixed to the current estimate for the regression subtask β̂ = argminβ E(x,y =
ŷ, β(ŷ)). Each continuous parametric model must be regressed with respect to its dependent
unary potentials so that the energy does not increase during a descent iteration. In particular,
the vanishing lines, surface color distributions and the representative appearance for patterns
and rectified scale for coplanar repeats are updated as detailed in the following paragraphs. The
updated parameters are aggregated in β̂.

Vanishing lines. All local affine frames assigned to the same planar surface are used to
refine the surface’s vanishing line orientation. The objective is the same as the unary defined in
eq. 7.2 and encodes the affine scale invariant defined in Chum et al. [14]. The vanishing line
is constrained to the unit sphere and so that all local affine frames are on the same side of the
oriented vanishing line,

l∗n = argmin
l

∑
i : ŷKiv=n

(
log s(Hl(x

K
i ))− 1∑

i′ [ŷ
K
ig = ŷKi′g]

log
∑
i′

[ŷKig = ŷKi′g] · s(Hl(x
K
i′ ))

)2

(7.7)

s.t. l>xKiw > 0, w ∈ { 1 . . . 3 }
l>l = 1,

(7.8)
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(a) (b) (c) (d) (e)

Figure 7.4: The Hierarchical Annotations. The annotations are included with the 113 image
dataset. (a) Translation symmetries are annotated by grids, regions that cannot share
coplanar repeats are colored differently. (b) Detected local affine frames to van-
ishing line assignment. (c) Groups of coplanar repeated local affine frames found
by annotation-assisted inference. (d) Image regions (SEEDS superpixels [90]) to
vanishing line assignment. (e) Background image regions, which coplanar repeats
cannot overlap.

for all scene planes n that have patterns assigned, where s(·) is the scale of a local affine frame
and Hl(·) is the rectifying transform as defined in Section 7.3.3, and xKiw denotes the individual
homogeneous coordinates that define local affine frame xKi . The constrained nonlinear program
is solved with the MATLAB intrinsic FMINCON.

Coplanar repeats and patterns. For features ψscale eq. (7.2) and ψapp eq. (7.3) that are
sums of squared differences, the parameters are estimated as a mean of the respective values.

Surface color distribution. The parameters of the color distribution of a surface are es-
timated from the member pixels of regions assigned to the surface. The approximate log-
likelihood defined for the unary ψcolor in eq. 7.4 is maximized to estimate the Gaussian mixture
for each surface that has region assignments,

{Σ∗nk, µ
∗
nk, π

∗
nk }Kk=1 = argmax

{Σnk,µnk,τnk}Kk=1

∏
j:ŷRj =n

∏
j′

max
k′

pv(x
R
jj′ | k′; Σnk, µnk, τnk) · τnk′ .

(7.9)
The objective defined in eq. 7.9 is maximized by block-coordinate ascent in a manner similar
to Lloyd’s algorithm: The mixture component assignments are fixed to estimate the means and
covariances and then vice-versa in alternating steps. A fixed number of iterations is performed.

7.4.2 Proposals

The initial minimal labeling energy requires a guess β0 at the continuous parameters β(y).
This is provided by a proposal stage in which the local affine frames xK are clustered by their
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7 Coplanar Repeats by Energy Minimization

RootSIFT descriptors and sampled to generate vanishing line hypotheses as in Chum et al. [14].
The clustered regions are verified against the hypothesized vanishing lines to create a putative
collection of coplanar repeats that are scale-consistent after affine rectification by a compatible
sampled vanishing line. The proposed coplanar repeat groups do not partition the local affine
frames, which is a constraint enforced by the minimal energy labeling ŷ. The initial color model
for each detected surface (equivalently proposed vanishing lines and background) is estimated
from the image patches of local affine frames from the proposed coplanar repeat groups.

7.5 Dataset

We introduce a dataset of 113 images containing from one to five scene planes with translated,
reflected and rotated coplanar repeats occurring periodically or arbitrarily (see Figure 7.4). The
dataset includes images from the ZuBuD database of Shao et al. and the CVPR 2013 symmetry
database assembled by Liu et al. [83, 58, 72]. The manual assignment of local affine frames to
coplanar repeat groups is infeasible since a typical image will have thousands of extracted local
affine frames. Direct annotation is also undesirable since setting changes of the local affine frame
detectors would invalidate the assignments. Instead, the annotations are designed to constrain
the search for coplanar repeated local affine frames, making annotations agnostic to the local
affine frame type. The annotations hierarchically group parallel scene planes, individual scene
planes, and areas within a scene plane that cannot mutually have the same coplanar repeats,
i.e. denoting distinct patterns. Clutter and non-planar surfaces are also segmented. LAF-level
assignment to coplanar repeat groups is achieved using a RANSAC-based estimation framework
which leverages the annotations to constrain the search for correspondences to choose the correct
transformation type.

7.6 Experiments

We evaluate the proposed method against two state-of-the-art geometric multi-model fitting
methods: J-Linkage and MultiRANSAC [99, 89]. Both estimators are hypothesize-and-verify
variants. A model hypothesis consists of a vanishing line and tentatively grouped local affine
frames of similar appearance. Coplanar repeat group assignments are verified by a threshold test
on the similarity measure for repeated local affine frame detection proposed by Shi et al. [84].
However, the rectified scale constraint defined in Eq. 7.2 is used in lieu of the scale kernel used
by [84]. We provide the number of scene planes present in each image to MultiRANSAC.

The accuracy of rectifications constructed from vanishing lines computed from detected copla-
nar repeat groups are used to compare the methods. Two necessary conditions for accurate rec-
tifications are that: (i) no outliers are included in the detected coplanar repeat groups, (ii) and
detected coplanar repeat groups densely cover the extents of the scene plane where there are
coplanar repeat groups annotated in the dataset. Thus the rectification accuracy of coplanar
repeats serves as a proxy measure for the precision and recall of coplanar repeat detection.

The accuracy of the rectification is evaluated with the warp error (see Section 2.12), where
the annotated coplanar repeats are used to compute the ground truth rectifying transformation.
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(a) Warp Error Calculation

(b) Segmented Scene Planes (c) Rewarped Coplanar Repeats

Figure 7.5: Warp Error Evaluation. (a) Rectification accuracy is measured with the warp error.
Annotated coplanar repeats are rectified with the ground-truth transformation Ĥ(·)
and rewarped with the inverse estimated rectificationH−1(·) (see also Section 2.12).
(b) The segmented scene planes contain annotated coplanar repeats that are used
for calculating the warp error. (c) The annotated coplanar repeats (colored red) are
rewarped (colored blue) and used to compute the warp error.

A rectilinear camera is assumed, so the division model parameter in (2.37) is set to zero, namely
λ = 0. The set of annotated coplanar repeats that is the largest proportion of the detected
coplanar repeats is used to match the rectification computed from detected coplanar repeats to a
rectification computed from annotated coplanar repeats (see Figures 7.5b and 7.5c).

The cumulative distribution of the warp error on the dataset (truncated at 10 pixels) is shown
in Figure 7.6a. At 1 pixel of the warp error, the proposed method solves 163% more scene planes
than the next best; at 2 pixels, 94% more; and at 5 pixels, which can be considered a threshold
for meaningful rectification, 51% more scene planes. Figure 7.6b plots the proportion of scene
planes rectified with less than 2 pixels of the warp error with respect to the number of scene
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(a) Warp Error Cumulative Distribution
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Figure 7.6: Evaluation: Accuracy of Rectifications. (a) Cumulative distribution function of
the warp error ∆rms computed on the 113 image dataset. (b) Proportion of planes
rectified with less than 2 pixels of the warp error in images with 1 to 5 scene planes

planes in the image. Clearly the proposed method excels when there are multiple scene planes
present.

Figure 7.7 plots the cumulative runtime of the labeling step for images as function of the
number of local affine frames and image regions, denoted sites, and the number of active model
proposals, denoted labels. Inference ranges from under a second to two minutes for the largest
problems in the dataset.

7.7 Discussion

The proposed energy minimization formulation demonstrates a distinct increase in the quality
of rectifications estimated from detected coplanar repeat groups on the evaluated dataset with
respect to two state-of-the-art geometric multi-model fitting methods. The advantage can be at-
tributed to the global scene context that is incorporated into the energy functional of the proposed
method. The evaluation was performed on a new annotated dataset of images with coplanar re-
peats in diverse arrangements.

Despite a significant improvement over the baseline, the proposed method failed to solve
roughly half of the dataset with less than 5 pixels of the warp error. Future work will incorporate
constraints specific to reflected and rotated local affine frames and parallel scene lines, which
would add significant geometric discrimination to the model. Learning the feature weight vector
w, which was hand tuned, could also give a significant performance boost. However, the com-
plete annotation of coplanar repeated local affine frames in an image is probably infeasible. This
means structured output learning must be performed with partial annotations, which complicates
the learning task considerably.
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Figure 7.7: Evaluation: Cumulative Runtime. Cumulative wall time in seconds for the labeling
task of energy minimization.

7.8 Annotation-Assisted Repeat Grouping

The annotations provided by the 113 image dataset referenced in the paper are discussed in detail
The annotations hierarchically segment the image into parts that: (i) are scene planes (ii) are the
union of scene planes that share the same vanishing line (iii) contain repeated content (iv) are
the union of repeated content annotations that are distinctly different from other repeated content
in the remainder of the image. In particular the repeated content annotations are specific to the
type of symmetry exhibited by the repeat: namely annotations for translational and rotational
symmetries are provided. In addition lattices are provided for translationally symmetric periodic
repeats.

Individual salient features (e.g. Hessian Affine Detections or MSERs) are not grouped or
annotated, so the annotations are feature agnostic, which is preferable since settings adjustments
would invalidate such annotations. Rather, the annotations are used to assist a RANSAC-based
inference algorithm to establish coplanar repeat groups. The annotations constrain the search for
correspondences, which gives a much higher inlier percentage among tentative groupings that
are inputted to RANSAC. Since the transform type is known from the annotations, the transform
with the fewest required constraints can be used, which improves the probability of proposing
a transform estimated from all-inliers. The vanishing line is estimated, and, depending on the
annotation tag, either a translation or rotation and translation, which maps repeats onto each
pointwise. The annotations are tagged so that the correct transformation can be estimated during
annotation-assisted inference.

Even with this relaxed standard of annotation, it is impossible to group repeats at their highest
frequency of recurrence. Depending on the features extracted, e.g., corners of facade ornamenta-
tion may be detected, where only the windows were marked as repeated. Thus any performance
evaluation must not penalize methods that correctly identify repeats that recur at higher frequen-
cies than the annotations. Reflections and rotational symmetries, in particular, exacerbate this

117



7 Coplanar Repeats by Energy Minimization

problem. Perhaps the most common example in the dataset are window panes, which have axial
symmetry, and if square, rotational symmetry. It is not practical to annotate all such occurrences
(not just restricted to windows) in a large dataset. The annotations also group oversegmentations
of the image (i.e. superpixels in this context) into contiguous components of planes, sets of par-
allel planes and background surface. These annotations are not currently used in the evaluation,
but would be useful for learning the regularization weights in the energy function.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 7.8: Annotations. (a) Constraints coplanar repeat grouping. (b) Vanishing line assign-
ment. (c) Plane assignment. (d) Mutually distinct repeated content. (e) Coplanar
repeats found by annotation-assisted inference. (f) Features on the background sur-
face. (g) Vanishing line assignment for regions. (h) Regions on the background
surface.
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8 Conclusions

This thesis proposes a suite of minimal solvers for rectifying from the radially-distorted images
of scene planes with repeated texture. The solvers differ by the assumptions made on the configu-
ration of the repeated texture. In particular, minimal problems are solved from novel constraints
on affine rectification induced by the distorted images of translational symmetries, reflections
and rigidly-transformed coplanar repeated textures. The solvers are generated using techniques
from both elementary algebraic geometry and the state-of-the-art methods in automated solver
generation. In general, the solvers have excellent stability and robustness to measurement noise.
The solvers extend rectification to distorted images with repeated coplanar scene content, which
may not contain a sufficient number of detectable straight lines for the state of the art to rectify.

In addition, an energy functional is proposed that incorporates terms for global scene con-
text and model parsimony with a geometric unary that measures the consistency of scene plane
models proposed by the rectifying solvers. The proposed global model has two important prop-
erties: (a) the energy minimization jointly evaluates rectification models proposed by rectifying
minimal solvers, and (b) higher-order terms encouraging smooth scene-plane segmentation and
model parsimony regularize the relatively weak geometric unary. These two properties were
shown to provide significant gains in rectification and segmentation accuracy over a greedy
method and global method that used the geometric unary alone on scenes with multiple planes.
Furthermore, the proposed minimal solvers can be plugged into the energy minimization frame-
work to extend their applicability to scenes without a dominant plane.
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